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Relational Contracting, Negotiation, 
and External Enforcement†

By Joel Watson, David A. Miller, and Trond E. Olsen*

We study relational contracting and renegotiation in environments 
with external enforcement of  long-term contractual arrangements. 
A  long-term contract governs the stage games that the contracting 
parties will play in the future (depending on verifiable  stage-game 
outcomes) until they renegotiate. In a contractual equilibrium, the 
parties choose their individual actions rationally, jointly optimize 
when selecting a contract, and exercise their relative bargaining 
power. Our main result is that in a wide variety of settings, the opti-
mal contract is  semi-stationary, with stationary terms for all future 
periods but special terms for the current period. In each period the 
parties renegotiate to this same contract. For example, in a simple 
 principal-agent model with a choice of costly monitoring technology, 
the optimal contract specifies mild monitoring for the current period 
but intense monitoring for future periods. Because the parties renego-
tiate in each new period, intense monitoring arises only off the equi-
librium path after a failed renegotiation. (JEL C73, C78, D23, D86)

In many  long-term relationships, such as between a worker and a firm, two busi-
ness partners, or an upstream supplier and a downstream buyer, the parties would 
like to cooperate for their mutual benefit but are each tempted to deviate for indi-
vidual gain. The contracts they form typically provide incentives through a combi-
nation of  self-enforcement (the parties’ coordinated behavior to reward and punish 
each other over time) and external enforcement, such as provided by courts and 
the legal system. The literature on relational contracting has provided insights on 
 self-enforcement in the context of stationary externally enforced terms. We develop 
a general model in which the parties can write arbitrary  nonstationary,  long-term 
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contracts that they can freely renegotiate at any time. We provide results on the 
form of optimal contracts and on the complementarity of external enforcement and 
 self-enforcement. Further, we present novel applications in which a worker and 
manager contract over a monitoring technology.

The prior literature establishes that, in a stationary environment without exter-
nal enforcement, if the parties can make monetary transfers that enter their pay-
offs linearly, then stationary behavior on the equilibrium path is optimal (see, 
e.g., Levin 2003, Miller and Watson 2013). Introducing external enforcement, we 
find that while the parties optimally write the same  long-term contract every time 
they renegotiate, the contract they write is in general  nonstationary. If monetary 
transfers as a function of verifiable outcomes can be externally enforced, or if 
no outcomes are verifiable, then the  nonstationarity takes a particular form with 
regard to external enforcement: the future part of the contract, which the parties 
will inherit in the next period, is stationary; but the present part, which governs 
the current period, is special. We call such a contract  semi-stationary. Intuitively, 
the parties choose the future part to maximize the power of incentives, while they 
choose the present part to maximize their joint payoffs given the power of incen-
tives available to them. Since they anticipate renegotiating in each new period, 
along the equilibrium path they always operate under the present part of the opti-
mal contract.1

A common theme in our applications is that, because equilibrium contracts are 
 semi-stationary, strict contractual terms such as intense monitoring are routinely 
adjusted to milder terms in the short run. Such behavior is often observed in real-
ity. For instance, many organizations have strict formal rules, regarding attendance 
and procedures at work, that management routinely allows employees to bend. Our 
result on complementarity speaks to empirical findings as well.2

Following the relational contracts literature (e.g., Levin 2003, Malcomson 2013), 
we view the contract between parties as an agreement encompassing both externally 
enforced and  self-enforced parts. The former, which we call the external contract, 
prescribes how a court or other external referee is to intervene in the relationship 
conditional on verifiable information. The latter,  self-enforced part specifies the 
parties’ individual actions over time, as well as their anticipated revisions of the 
external contract.3 In our model, the external contract specifies the stage game to be 
played in each period, as a function of the verifiable history. We normally refer to an 
external contract as simply a contract, as it will typically be clear from the context 
whether we are addressing both parts of the contract or just the external part. We add 
“external” where needed to avoid confusion.

Allowing for arbitrary  long-term contracts sets our model apart from the previous 
literature on relational contracting with limited external enforcement, which has typ-
ically either allowed for only  short-term (spot) contracts, or assumed that  long-term 

1 While a  semi-stationary contract is intended to be renegotiated every period, we explain in Section IIIA how 
such renegotiation could be avoided in an expanded model in which contracts can include options, without other-
wise affecting any of our conclusions.

2 Iossa and Spagnolo (2011) provides an explanation of the first phenomenon that is related to ours; we discuss 
the differences in Section V. Empirical findings of complementarity are briefly discussed in Section IIID. 

3 See Watson (2013, 2001) for detailed discussion. In the literature, external and  self-enforced contractual ele-
ments are variously differentiated with the terms “explicit/implicit,” “formal/informal,” and “legal/relational.” The 
“external/ self-enforced” terminology we prefer focuses attention on the source of the enforcement power. 
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contracts are stationary.4 Though the environment is stationary,  nonstationary con-
tracts introduce a  payoff-relevant state variable: the contract the parties agreed upon 
previously sets the disagreement point for renegotiation in the current period, and 
it therefore influences the agreement that they reach. Moreover, much of the related 
literature assumes that  self-enforcement is irrevocably terminated after a deviation, 
so then parties behave myopically. In contrast, we suppose that the parties can rene-
gotiate all aspects of their relationship every period, and we find that they continue 
to combine optimal  self-enforcement with external enforcement even after a devia-
tion. Our approach thus addresses how agents initiate and manage their relationship, 
including how their agreements evolve after deviations and disagreements.

Kostadinov (2019), developed independently and contemporaneously, is the only 
other project of which we are aware that studies  long-term,  nonstationary contracts 
in an environment with external enforcement and renegotiation. That project is con-
ceptually distinct from ours on two dimensions. First, Kostadinov (2019) studies a 
particular  principal-agent game in which the agent is strictly risk averse, and uses 
the specific properties of the agent’s risk aversion to prove results. In contrast, we 
examine a wide range of settings with monetary transfers and quasilinear utility. 
Second, Kostadinov (2019) primarily employs a concept of renegotiation based 
on “strong optimality” (following Levin 2003), without a theory of bargaining. 
In contrast, we use contractual equilibrium to explicitly model renegotiation, as 
we describe next. Nonetheless, Kostadinov (2019) finds a comparable result: in a 
strongly optimal equilibrium, the  long-term contract is renegotiated each period and 
is  nonstationary.5

Our model applies the concept of contractual equilibrium (Miller and Watson 
2013, Watson 2013) to a hybrid dynamic game in which each period has first a 
cooperative negotiation phase and then a  noncooperative action phase. In the nego-
tiation phase, players renegotiate their contract and can make monetary transfers; 
in equilibrium they reach an agreement according to the generalized Nash (1950) 
bargaining solution. The disagreement point entails no immediate transfer. In the 
action phase, players choose actions in the contractually specified stage game; in 
equilibrium these actions depend only on the public history and satisfy individual 
incentive constraints, as in a perfect public equilibrium.6

Our model accommodates a variety of applications (such as employment rela-
tions, repeated procurement, team production, and partnerships) and a variety of 
externally enforced elements, such as contingent payments, production technolo-
gies, and task assignment. In an application, the scope of external enforcement is 
represented by an exogenously given set of stage games that are available for the 
players to specify in their contract. Each stage game includes a partition defining the 
extent to which outcomes are verifiable.

4 Prominent entries include Baker, Gibbons, and Murphy (1994, 2002); Schmidt and Schnitzer (1995); Che 
and Yoo (2001); Kvaløy and Olsen (2009); Iossa and Spagnolo (2011); and Itoh and Morita (2015).

5 The Kostadinov (2019) logic is similar to that behind our main result: players design the future part of their 
contract to harshly punish a deviating player, but each period they renegotiate to special terms for the current period. 
Kostadinov (2019) also shows that such a result would also arise from applying a generalized notion of contractual 
equilibrium in his model.

6 Miller and Watson (2013) and Watson (2013) provide  noncooperative foundations for the hybrid cooperative/ 
noncooperative game, using  cheap-talk bargaining and axiomatic equilibrium selection. In Appendix Section B3 we 
explain how to generalize Miller and Watson’s results to our setting with external enforcement. 
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Section I presents our general model and the definition of contractual equilib-
rium, expressed as a recursive characterization of equilibrium continuation val-
ues. This characterization extends the notion of  self-generation (Abreu, Pearce, 
and  Stacchetti 1990) for our contracting environment and is convenient for 
applications.

Section II presents our leading application, a  principal-agent relationship with 
a costly and externally enforceable monitoring technology, which illustrates the 
components of our theory and all of our general results. In a setting with no ver-
ifiable information, optimal contracts are  semi-stationary and specify mild mon-
itoring for the current period but intense monitoring for future periods, which 
the players adjust each period in equilibrium. When we augment the example 
by adding a verifiable monitoring signal but no externally enforced contingent 
transfers, the optimal contract is no longer  semi-stationary. But with contingent 
transfers, there is once again an optimal  semi-stationary contract. This extension 
demonstrates the importance of contingent transfers for our main result: if there 
is verifiable information but externally enforced transfers are constrained by, say, 
limited liquidity or legal constraints, then  semi-stationary contracts will not gen-
erally be optimal.

Section  III presents our general results. Section  IIIA shows how to construct 
optimal contracts within the class of  semi-stationary contracts. Theorem  1, in 
Section IIIB, shows that  semi-stationary contracts are optimal in contractual settings 
with externally enforced contingent transfers. Theorem 2, in Section IIIC, obtains 
the same result for contractual settings with no verifiable information. Section IIID 
explains why improvements in external enforcement are always complementary 
with  self-enforcement in our model. Appendix A provides the proof of Theorem 1, 
and Appendix B provides foundations for contractual equilibrium and a discussion 
of technical issues related to existence.

In Section IV, we expand the application from Section IIB by allowing option con-
tracts, in which one player verifiably selects from a menu of monitoring/ payment 
pairs. This application shows how giving parties the ability to contractually allocate 
decision rights can expand the scope for cooperation. In this case, whether decision 
rights are optimally allocated to the manager or to the worker depends on their rel-
ative bargaining strengths.

I. The Model

We generalize the model of Miller and  Watson (2013) by adding external 
enforcement. Players 1 and 2 play a relational contracting game in discrete time 
over an infinite horizon, with discount factor  δ ∈ (0, 1) . In each period, there are 
two phases: the negotiation phase, followed by the action phase. In the negotiation 
phase, the players jointly decide to form or revise their contract and make an imme-
diate monetary transfer. In the action phase, the players individually select actions 
in a stage game and receive payoffs. External enforcement is incorporated into the 
stage game, which may vary from period to period as specified by the players’ con-
tract. At the end of each period the players jointly observe an unverifiable draw from 
a randomization device that we assume is uniformly distributed on the unit interval. 
We normalize payoffs by multiplying by  1 − δ .
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A. Stage Games and External Contracts

A stage game  γ = (A, X, λ, u, P ) , to be played in the action phase, has the fol-
lowing components:

 • a set of action profiles  A =  A 1   ×  A 2   ,
 • an outcome set  X ,
 • a conditional distribution function  λ : A → ΔX ,
 • a payoff function  u : A →  ℝ   2  , and
 • a partition  P  of  X .

Each player   i  takes an action   a i   ∈  A i   . The action profile  a ∈ A  determines the 
probability distribution  λ(a) ∈ ΔX  over outcomes. The realized outcome  x ∈ X  
is commonly observed by the players, but only the partition element that contains  x ,  
denoted  P(x) , is verifiable. Though  stage-game payoffs can in general depend on 
both the action profile  a  and the outcome  x , we define  u(a)  as the expected payoff 
over  x ∼ λ(a)  when the players choose action profile  a . Player  i  observes only the 
outcome  x  and her own action   a i   .7

In each period, the players’ current external contract specifies a stage game 
for them to play in the action phase, as a function of the history of  stage-game 
outcomes. Formally, there is a set  Γ  of feasible stage games, and we let  
  ≡ ∪ {X ∣(A, X, λ, u, P ) ∈ Γ }  be the set of possible  stage-game outcomes. Let  
  H   X  ≡  ∪  k=0  

∞        k   be the space of  finite-length outcome histories, where       0  ≡ { h   0  }  
is the singleton consisting of the null history at the start of the game. An external 
contract is a function  c :  H   X  → Γ , where  c(h)  is the stage game to be played in the 
period following outcome history  h ∈  H   X  . As noted in the introduction, we use the 
qualifier “external” to distinguish this from the  self-enforced part of the players’ 
contract, their coordinated play in the action phase over time. But where it would not 
cause confusion, we drop the qualifier and say simply “contract.”

In our analysis, we study such contracts in the form of “continuation contracts.” 
Given a history of outcomes through period  t − 1 , the continuation contract from 
period   t  gives the stage game in each period  τ ≥ t  as a function of the history 
of outcomes from  t  until  τ − 1 . The continuation contract may be interpreted as 
specifying (i) the stage game to be played in period  t  and (ii) a mapping from the 
 stage-game outcome to the continuation contract in period   t + 1 . Formally, for 
any  c :  H   X  → Γ , let  g(c) ≡ c( h   0  )  be the stage game prescribed for the initial 
period. For any  x ∈   and  h ∈  H   X  , where  h  is  k  periods in length, let  xh  denote 
the  (k + 1) -period outcome history in which   x  is followed by the sequence   h . 
Define  c | x :  H   X  → Γ  by  (c | x)(h) ≡ c(xh)  for every  h ∈  H   X  . If the players oper-
ate under continuation contract   c   t   in period  t , then they play stage game  g( c   t  )  and, 
after realizing outcome   x   t   in period  t , they will inherit continuation contract   c   t  |  x   t   in 
period  t + 1 .

7 To model a setting in which players observe each other’s actions,  X  and  λ  can be defined so that the outcome 
reveals the action profile. The framework also allows for applications in which the players may not observe their 
own payoffs.
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External contracts can depend only on information that is verifiable. This means 
the transition from a continuation contract in one period to the continuation contract 
in the following period must be measurable with respect to the partition of  stage-game 
outcomes. Formally, for any contract  c , and letting  (A, X, λ, u, P ) = g(c) , the con-
tract respects verifiability if  x ∈ P(x′ )  implies  c | x = c | x′  for all  x, x′ ∈ X . Let  C  
be the set of contracts that respect verifiability.8

B. The Relational Contracting Game

We now describe the relational contracting game. In each period   t , players 
enter the negotiation phase with a contract    c ˆ     t  ∈ C , inherited from period   t − 1 . 
The inherited contract at the beginning of the game, denoted   c   0  ≡   c ˆ     1  , is exoge-
nous and represents the default legal rule. In the negotiation phase, the players bar-
gain to select a contract   c   t  ∈ C  and an immediate monetary transfer   m   t  ∈  ℝ  0  2  , 
where   ℝ  0  2  ≡ {m ∈  ℝ   2  ∣  m 1   +  m 2   = 0}  is the set of balanced transfers. The nego-
tiated transfer is enforced automatically with the agreement. If the players do not 
reach an agreement, then they operate under the inherited contract, so   c   t  =   c ˆ     t   and 
the transfer is zero.

We model interaction in the negotiation phase cooperatively. The bargaining 
protocol is represented by a fixed vector of bargaining weights  π = ( π 1  ,  π 2  )  sat-
isfying   π 1  ,  π 2   ≥ 0  and   π 1   +  π 2   = 1 . The bargaining weights can be viewed as a 
reduced form of a noncooperative bargaining protocol, such as one in which   π i    is the 
probability that player  i  gets to make an ultimatum offer. Appendix Section B3 dis-
cusses the connections between the cooperative and noncooperative approaches, 
along the lines of Miller and Watson (2013) and Watson (2013).

In the action phase of period  t , the players simultaneously choose actions in the 
stage game   γ   t  = ( A   t ,  X   t ,  λ   t ,  u   t ,  P   t  )  prescribed by the current contract   c   t  . Action pro-
file   a   t  ∈  A   t   leads to an outcome   x   t  , distributed according to   λ   t ( a   t  ) . Along with the 
outcome, the players observe the draw of the public randomization device.

The payoffs within period  t  are given by the sum of any monetary transfer and 
the  stage-game payoffs, normalized by  1 − δ , so the expected payoff vector is  
 (1 − δ )( m   t  +  u   t ( a   t  )) . As the game progresses, the players’ behavior and the 
outcomes of the exogenous random variables induce a sequence of transfers and 
 stage-game payoffs, so the continuation payoff vector from any period  τ  is the 
expected value of

   ∑ 
t=τ

  
∞

     δ   t−τ  (1 − δ)  ( m   t  +  u   t  ( a   t ) )  ,

conditioned on the history prior to time   τ  and the specification of behavior from 
period  τ .

In summary, the contractual setting is described by the set of feasible stage games  Γ  
(and its associated set of contracts  C  that respect verifiability), the default contract   c   0  , 

8 Limitations on external enforcement can be modeled as restricting the players to a subset   C ˆ   ⊂ C  of enforce-
able contracts. Our analysis applies without alteration if   C ˆ    is closed under the transition relation. In online Appendix 
Section C.3 we provide an existence result for finite   C ˆ   . Otherwise we shall not constrain  C . 
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and bargaining weights  π . We make two regularity assumptions throughout. First, 
we assume that   c   0   specifies the same stage game for every history and that this stage 
game has a Nash equilibrium. Second, we assume that  Γ  has uniformly bounded joint 
values: there is a number  ϑ ∈ ℝ  such that for every stage game  (A, X, λ, u, P ) ∈ Γ  
and every  a ∈ A , we have  − ϑ ≤  u 1  (a) +  u 2  (a) ≤ ϑ .

C. Contractual Equilibrium Values

We analyze behavior using the concept of contractual equilibrium (Miller 
and Watson 2013, Watson 2013), which requires the following: in the action phase, 
each player’s individual action is optimal in response to the other player’s action 
and the equilibrium specification of future behavior. In the negotiation phase, the 
players reach an agreement consistent with the generalized Nash bargaining solu-
tion with bargaining weights  π , where the disagreement point entails equilibrium 
play from the action phase of the current period under the inherited contract with no 
immediate transfer. The players renegotiate their entire contract in the negotiation 
phase, including the external contract  c , their coordinated play in the stage game of 
the current period, and their plans for how future play under disagreement depends 
on the history of  stage-game outcomes. Thus, an agreement in one period implicitly 
specifies the disagreement points in future periods.9

There are two standard approaches to characterizing equilibria in repeated games. 
The first involves describing strategies for the dynamic game and then stating and 
evaluating equilibrium conditions on the strategy space. The second characterizes 
the set of equilibrium continuation values recursively, following Abreu, Pearce 
and  Stacchetti (1990), with equilibrium conditions expressed through dynamic 
programming. While both approaches extend to contractual equilibrium, we follow 
the recursive approach for convenience. Appendix Section B1 exposits the strategic 
approach and the links between the two approaches.

Because  long-term contracts render the relational contracting game nonstation-
ary, the set of continuation values attainable from a given period depends on the 
inherited contract. We therefore deal with collections of the form   =  {W(c)} c∈C    
where, for every  c ∈ C ,  W(c) ⊂  ℝ   2   is the set of equilibrium continuation values 
from the beginning of a period in which  c  is the inherited contract.10 Our character-
ization of equilibrium values extends the notion of  self-generation (Abreu, Pearce, 
and Stacchetti 1990), as we describe next.

Note that in a given period under contract  c , the players interact in stage 
game  g(c) ≡ (A, X, λ, u, P )  and will get an outcome  x ∈ X , leading to inherited 
contract  c | x  in the next period. The players will then anticipate coordinating on some 
continuation value in  W(c | x)  in the next period. Since the players can randomize 
over continuation values by conditioning on the draw of the  public-randomization 
device, they are essentially picking a value in the convex hull of  W(c | x) , which we 
denote  co W(c | x) . Let  y(x)  denote the expected continuation value that the players 
coordinate on in the event that outcome  x  occurs in the current period. Also, given 

9 As in perfect public equilibrium, contractual equilibrium assumes that the players’ equilibrium behavior is 
conditioned only on their common history, so the bargaining set and disagreement point are commonly known.

10 We need to allow  W(c) = ∅  for technical reasons discussed in footnote 12 and Appendix Section B2.
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such a continuation function  y : X →  ℝ   2  , let   y –  : A →  ℝ   2   be the expected contin-
uation function   y – (a) ≡  E x  [ y(x) ∣ x ∼ λ(a)] .

Incorporating the anticipated continuation value, in the current period the play-
ers’ interaction is effectively to play the induced static game

(1)    ⟨  A,  (1 − δ) u ( ⋅ )  + δ  y –  ( ⋅ )  ⟩    ,

where  A  is the set of action profiles, and payoffs are the convex combination of 
 stage-game payoffs and continuation values. The players can  self-enforce any mixed 
action profile  α ∈ ΔA  that is a Nash equilibrium of this induced game, resulting in 
continuation value

(2)  w =  (1 − δ) u (α)  + δ  y –  (α)  

from the action phase in the current period.11

DEFINITION 1: Given  γ = (A, X, λ, u, P ) ∈ Γ  and  y : X →  ℝ   2  , call action pro-
file  α ∈ ΔA  enforced relative to  γ  and  y  if it is a Nash equilibrium of Induced 
Game 1.

DEFINITION 2: Given   =  {W(c)} c∈C   , consider any contract  c ∈ C , and let  
g(c) = (A, X, λ, u, P ) . Say that  w ∈  ℝ   2   is  c -supported relative to    if there exist  
α ∈ ΔA  and  y : X →  ℝ   2   such that  y(x) ∈ co W(c | x)  for all  x ∈ X ,  α  is enforced 
relative to  g(c)  and  y , and equation (2) holds.

Turning to the negotiation phase of the current period, under inherited contract   c ˆ    
the players would coordinate on some   c ˆ   -supported continuation value    w _    in the event 
that they fail to make an agreement. Thus,    w _    is the disagreement point for negoti-
ation in the current period. The Nash bargaining solution predicts that the players 
renegotiate to a contract  c  and coordinate on a  c -supported continuation value that 
maximizes their joint value,

(3)  L ()  ≡ max { w 1   +  w 2    ∣  c ∈ C and w is  c-supported relative to  }  ,

and they make an immediate transfer to split the surplus in proportion to their bar-
gaining weights. We call  L()  the level of the collection. Because an equilibrium 
collection    gives the continuation values available from every period, it must sat-
isfy the following  self-generation condition.

DEFINITION 3: Say that a collection   =  {W(c)} c∈C    is bargaining  self-generating 
(BSG) if for every   c ˆ   ∈ C  and  w ∈ W( c ˆ  ) , there exists a value    w _    that is   c ˆ   -supported 
relative to    such that  w =   w _   + π(L(  ) −    w _   1   −    w _   2   ) .

11 Here  ΔA  is defined as the space of uncorrelated probability distributions over  A .
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The BSG condition captures the idea of internal consistency in that the bargaining 
solution selects among all continuation values attainable relative to   . Contractual 
equilibrium incorporates the additional condition of external consistency, mean-
ing that the players attain the maximum joint value over all internally consistent 
equilibria.

DEFINITION 4: A collection    is called a contractual equilibrium value (CEV) 
collection if it is BSG and its level  L(  )  is maximal among the set of BSG collections.

We will say that contractual equilibrium exists if there is a CEV collection    
with the property that  W( c   0  ) ≠ ∅ . Existence of contractual equilibrium is ana-
lyzed in the context of our main characterization results in the next section.12 At this 
point, we have the following immediate implication of the CEV definition.

LEMMA 1: For a given contractual setting, all CEV collections attain the same 
level.

For every  c ∈ C , let   W   ∗ (c)  be the union of all  W(c)  sets, over all CEV collec-
tions, and let      ∗  ≡  { W   ∗ (c)} c∈C   . Under conditions for existence developed in the 
next section,      ∗   is also a CEV collection and so we refer to it as the maximal CEV 
collection. We call   c   ∗   an optimal contract if it solves the maximization problem that 
defines  L(     ∗  )  in equation (3). We sometimes refer to the equilibrium level as   L   ∗  .

Clearly, from Lemma 1 and the BSG definition, we have   w 1   +  w 2   =  L   ∗   for every  c  
and every  w ∈  W   ∗ (c) . Also, for an arbitrary set  Y ⊂  ℝ   2   of constant joint value, let us 
refer to the vertical/horizontal distance between its extreme points as its span:

  span (Y )  ≡ sup  { w 1   −  w  1  ′    ∣  w, w′ ∈ Y }  .

We shall say that  Y  attains its span if it contains its extreme points, so there are ele-
ments   z   1 ,  z   2  ∈ Y  such that   z  1  2  −  z  1  1  = span(Y ) .

As for which payoff vector in a CEV collection the players obtain from the start of 
the game, it depends on what their continuation play would be if they fail to agree in 
the first period. For instance, if the initial contract   c   0   specifies a constant stage game 
that represents the players’ outside values, and we normalize these outside values to 
zero, then in a contractual equilibrium the players get payoffs of exactly  π L   ∗  . That 
is, they split the surplus (using voluntary transfers in the negotiation phase) relative 
to their outside values in accordance with their bargaining weights.

II. Example: Choice of Monitoring Technology

This section analyzes a simple example, in several variations, to illustrate our 
approach and main results, in a way that we hope also provides some novel  economic 

12 Existence of a BSG collection requires existence of a maximum in expression  (3). Note that contractual 
equilibrium can exist with  W(c) = ∅  for some values of  c , which we allow to deal with  off-path contracts under 
which there would be no best response in the action phase (see Appendix Section B2). Also, for convenience we 
allow  W(c)  to be empty if  c  is a contract that would never be inherited. In online Appendix Section C.3 we prove an 
existence result for settings with a finite number of external contracts, where  W(c) ≠ ∅  for all  c .
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insights. Consider a relationship between a worker (player 1) and a manager (player 2), 
with an externally enforced monitoring technology. In the action phase, the play-
ers interact in a stage game parameterized by a monitoring level  μ ∈ [0, 1] . The 
worker privately chooses effort   a 1   ∈  A 1   = {0, 1} . High effort,   a 1   = 1 , imposes a 
cost  β ∈ (0, 1)  on the worker and yields a benefit of  1  to the manager, both in mon-
etary terms. The manager has no action but pays  k( μ)  for the monitoring technology. 
The  stage-game payoff vector is therefore given by  u( a 1  ) = (−β  a 1  ,  a 1   − k( μ)) . 
Assume  k( ⋅ )  is differentiable,  k′ > 0 , and  β + k(1) ≤ 1 .

The  stage-game outcome  x ∈ X = {1, 0}  is a signal of the worker’s effort choice. 
We call  x = 1  the “high” signal and  x = 0  the “low” signal. If the worker exerts 
high effort then the signal is high for sure, but if the worker exerts low effort then 
the signal is high with probability  1 − μ  and low with probability  μ . The manager 
does not observe the worker’s effort choice or the payoff he receives.13 Assume that 
the signal is not verifiable (the external enforcer cannot distinguish between  x = 1  
and  x = 0 ), and so  P = {{0, 1}} .

Because nothing is verifiable, an external contract is simply a sequence  c  
=  {  μ   τ  }  τ=1  ∞   , where   μ   1   is the monitoring level specified for the current period,   μ   2   is 
the monitoring level specified for the next period, and so on. Note that regardless of 
the outcome  x  in the current period, the contract inherited in the following period 
is  c | x =  {  μ   τ  }  τ=2  ∞   .

A. Fixed Monitoring Technology

As a benchmark, we first examine the setting in which the monitoring technol-
ogy  μ  is exogenously fixed and constant over time. That is,  Γ  contains just one stage 
game, so in the negotiation phase, the players have only their immediate transfer and 
their  self-enforced continuation play to discuss. There is just one set of continuation 
values to calculate,  W , which we write without reference to the lone contract   c   0  .

This relationship falls within the class analyzed by Miller and  Watson (2013), 
where the contractual equilibrium value set   W   ∗   is easily characterized.14 Because 
every element of   W   ∗   has the same joint value   L   ∗  ,   W   ∗   is a subset of a line segment of 
slope  − 1 . In fact,   W   ∗   attains its span, and we let   z   1   and   z   2   denote the extreme points, 
where   z   1   gives the worst continuation value for player 1 and   z   2   gives the worst for 
player 2. Other points in   W   ∗   are inessential to the equilibrium construction because 
the players can utilize the public randomization device to coordinate on any point in 
the convex hull as an expected continuation value. Depending on parameter values, 
either high effort will be sustainable and   L   ∗  = 1 − β − k( μ) , or high effort cannot 
be achieved and   L   ∗  = − k( μ) .

13 Alternatively, we could assume that the manager’s payoff depends only on the monitoring signal, equaling 1 
if  x = 1  and  − (1 − μ)/μ  if  x = 0 , which implies the same payoff function  u .

14 It is also easy to calculate, as a benchmark, the optimal perfect public equilibrium in a setting with no negotia-
tion but still with voluntary transfers, as analyzed by Levin (2003). High effort from the worker and payments from 
the manager can then be sustained in equilibrium if the cost saved by a deviation is no larger than the expected loss 
of future surplus, weighted by the probability of detecting the deviation, that is, if  (1 − δ )β ≤ δμ(1 − β ) . This 
equilibrium can be sustained by reversion to low effort and no payments in all future periods if any party should 
deviate. However, such behavior is not credible if the parties can renegotiate and can each exercise bargaining 
power. Contractual equilibrium explicitly accounts for such negotiations.
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Let us proceed under the presumption that   L   ∗  = 1 − β − k( μ) . With reference 
to the BSG condition, we can determine   z   1   and   z   2   by characterizing the associated  
disagreement points     w _     1   and     w _     2   for which   z   1  =    w _     1  + π( L   ∗  −    w _    1  1  −    w _    2  1  )  
and   z   2  =    w _     2  + π( L   ∗  −    w _    1  2  −    w _    2  2  ) . Here     w _     1   must be the supported continuation 
value from the action phase that is most favorable to player 2, whereas     w _     2   is the one 
most favorable to player 1.

Disagreement point     w _     1   is characterized as follows and displayed in Figure 1. The 
players coordinate on   a 1   = 1  being played in the current period. Then if the signal 
is high, they coordinate to achieve expected continuation value   z   1  + ( ρ, −ρ)  from 
the next period. If the signal is low, they coordinate on   z   1   from the next period. Thus,

(4)     w _     1  =  (1 − δ)  (−β, 1 − k (μ) )  + δ  z   1  + δ (ρ, − ρ)  .

The value of  ρ  must be large enough to ensure that the worker does not want to devi-
ate to low effort, knowing that such a deviation would be detected with probability  
μ , and then punished:

  −  (1 − δ) β + δ ( z  1  1  + ρ)  ≥  (1 − δ)  ⋅ 0 + μδ  z  1  1  +  (1 − μ) δ ( z  1  1  + ρ)  .

This incentive constraint simplifies to  μ δρ ≥ β (1 − δ ) . Because we are charac-
terizing the supported continuation value that is worst for player 1, it is optimal to 
pick the smallest possible value of  ρ , so we set  ρ = (1 − δ )β/δ μ . Because play 

Figure 1. Contractual Equilibrium with Fixed Monitoring

Notes: Figures in Section  II are drawn to scale using parameters  β = 1/4 ,  k( μ) = (3/4) μ ,  δ = 3/4 , 
and   π 1   =  π 2   = 1/2 . Disagreement point     w _     1   or any other point in   W   ∗   is attained by making an appropriate trans-
fer, playing   a 1   = 1 , and continuing with promised utility   z   1  + ( ρ, −ρ)  if the signal is  x = 1 , but with   z   1   if  x = 0 . 
Since     w _     1  ∈  W   ∗  ,   z   1  =    w _     1  . Disagreement point     w _     2   is attained by playing   a 1   = 0  and continuing with   z   2   regard-
less of  x . When     w _     2   is the disagreement point, the parties negotiate to   z   2  .

−β w1

w2
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in the current period is efficient,     w _   1   +    w _   2   =  L   ∗  , so there is no bargaining surplus; 
thus   z   1  =    w _     1  . Combining this with equation (4), inserting the values of  ρ  and   L   ∗  , 
and solving for   z   1   yields

   z   1  =  (   β _ μ   − β, 1 − k (μ)  −   β _ μ  )  .

The payoffs reflect the worker’s rent from exerting effort under imperfect monitoring.
Disagreement point     w _     2   is characterized as follows and displayed in Figure 1. The 

players coordinate on   a 1   = 0  being played in the current period and, regardless of 
the signal realization, they coordinate to achieve continuation value   z   2   from the next 
period. Thus,

     w _     2  =  (1 − δ)  (0, − k( μ))  + δ  z   2  .

Combining this with   z   2  =    w _     2  + π( L   ∗  −    w _    1  2  −    w _    2  2  )  and inserting the value of   L   ∗  ,  
we obtain

   z   2  =  (0, − k (μ) )  + π (1 − β)  .

Here the payoffs reflect that the parties share the bargaining surplus in proportion to 
their bargaining weights.

The final equilibrium condition is that  ρ ≤ span( W   ∗  ) ; that is, the bonus in con-
tinuation value that the worker receives for a high signal must be attainable. Noting 
that

  span ( W   ∗ )  ≡  z  1  2  −  z  1  1  =  z  2  1  −  z  2  2  =  π 1   (1 − β)  −  (  β _ μ   − β)  

and recalling that  ρ = (1 − δ )β/δμ , we find that the condition for sustaining high 
effort in contractual equilibrium simplifies to

(5)  β ≤ μδ  ( π 1   + β −  π 1   β )  .

If this inequality does not hold, then high effort cannot be sustained, the level 
is   L   ∗  = − k( μ) , and  (0, − k( μ))  is the unique  contractual-equilibrium value.15

It is important to note how the equilibrium span and level depend on the mon-
itoring technology  μ . The span is increasing in  μ , because with better monitoring 
the worker can be promised a smaller reward  ρ  for a high signal, which reduces   z  1  1  . 
The level is decreasing in  μ , because better monitoring costs more. There is thus a 
 trade-off in setting the monitoring level: a high enough span is needed for the work-
er’s incentive condition, but it comes at a higher monitoring cost. The  monitoring 
level that maximizes welfare is the lowest that satisfies condition  (5), which 
is  μ = β/(δβ + δ  π 1   − δ  π 1   β ) .

15 Unless  μ =  π 1   = 1 , the condition for sustaining high effort in the contractual equilibrium is stricter than the 
corresponding condition for the optimal perfect public equilibrium described in footnote 14. The difference arises 
because the perfect public equilibrium employs punishments that would not survive renegotiation.
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B. Contractible Monitoring Technology

Now suppose that  Γ  contains all monitoring levels  μ ∈ [0, 1] , so the players can 
write a contract that specifies any sequence  c =  {  μ   τ  }  τ=1  ∞   . For any contract  c ∈ C , 
let   z   1 (c)  and   z   2 (c)  denote the extreme points of   W   ∗ (c) , which attains its span as in the 
previous setting. As before, we let   z   i (c)  denote the worst point for player  i .

It turns out that, in contractual equilibrium, stationary contracts (specifying the 
same  μ  in all periods) are suboptimal in the present setting. Instead, the optimal con-
tract is  semi-stationary, specifying one monitoring level   μ ˆ    for the current period and 
another level   μ _   for all future periods. Then in equilibrium the inherited contract is 
always   {  μ _ }  t=1  ∞   , and the players always renegotiate to specify   μ ˆ    for the current period 
and   μ _   for all future periods.

Intuition gleaned from the fixed- μ  case helps explain this result. To achieve the 
highest joint value in the current period, the players want  μ  in this period to be low 
to save on the monitoring cost. In order to support high effort with a low monitoring 
level in the current period, the players need the span of continuation values from 
the next period to be large. To maximize the span, it is best to specify a high mon-
itoring level for future periods, which supports  wide-ranging disagreement points. 
The players anticipate renegotiating in the future to lower the monitoring level one 
period at a time. Renegotiation shifts every disagreement point to a continuation 
value in the direction of  π  because players share surplus in this proportion, so rene-
gotiation ensures a high joint value while maintaining the large span of continuation 
values.

To perform the analysis formally and to calculate the monitoring levels   μ ˆ    and   μ _    
that are featured in the optimal contract, take as given any contract  c =  {  μ   τ  }  τ=1  ∞    and 
let  c′ = c | x =  {  μ   τ  }  τ=2  ∞    denote the inherited contract in the next period. We shall 
express   z   1 (c)  and   z   2 (c)  as functions of   z   1 (c′ )  and   z   2 (c′ )  which, in particular, 
relates  span( W   ∗ (c))  to  span( W   ∗ (c′ ))  and also helps us calculate   L   ∗  .

The specifications of disagreement play that support extreme points   z   1 (c)  
and   z   2 (c)  are exactly as in the fixed- μ  case, except that the continuation values in the 
following period are taken from the set   W   ∗ (c′ ) . In the disagreement point associated 
with   z   1 (c) , players coordinate on play of   a 1   = 1  in the current period and on con-
tinuation value   z   1 (c′ ) + x( ρ, − ρ)  from the next period (giving a bonus of  ρ  to the 
worker if the signal is high):

(6)     w _     1  (c)  =  (1 − δ)  (− β, 1 − k ( μ   1 ) )  + δ  z   1  (c′)  + δ (ρ, − ρ)  .

Since the last term is a transfer and   z   1 (c′ )  has joint value   L   ∗  , the negotiation surplus 
derives entirely from changing the monitoring level in the current period, and we 
have   z   1 (c) =    w _     1 (c) + (1 − δ )π ( L   ∗  − (1 − β − k(  μ   1 )))  . Combining this with 
equation (6) yields

(7)   z   1  (c)  =  (1 − δ)  (  β _ 
 μ   1 

   − β,  1 −   β _ 
 μ   1 

   − k ( μ   1 ) ) 

 +  (1 − δ) π ( L   ∗  − 1 + β + k ( μ   1 ) )  + δ  z   1  (c′)  ,
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where we have set  ρ = (1 − δ )β/δ μ   1   to make the worker’s incentive constraint 
bind.16 The payoff to the worker in the current period reflects her rent from effort 
plus her share of the negotiation surplus.

The disagreement point associated with   z   2 (c) , as before, entails play of   a 1   = 0  
and coordination on continuation value   z   2 (c′ )  from the next period, implying

     w _     2  (c)  =  (1 − δ)  (0, − k ( μ   1 ) )  + δ  z   2  (c′ )  .

The bargaining solution implies   z   2 (c) =    w _     2 (c) + (1 − δ )π( L   ∗  + k(  μ   1 )) . Com-
bining these expressions yields

(8)   z   2  (c)  =  (1 − δ)  (0, − k ( μ   1 ) )  +  (1 − δ) π ( L   ∗  + k ( μ   1 ) )  + δ  z   2  (c′ )  .

Recalling the definition of span, we subtract equation (7) from equation (8) to obtain

(9)  span ( W   ∗  (c) )  =  (1 − δ)  (1 − β)   π 1   −  (1 − δ) β   1 −  μ   1  _ 
 μ   1 

   + δ span ( W   ∗  (c′ ) )  .

Suppose that we want to design a contract to maximize  span( W   ∗ (c)) . Because expres-
sion (9) is increasing in   μ   1   and in  span( W   ∗ (c′ )) , we should set   μ   1  = 1  and, by induc-
tion, specify the same maximal monitoring level in all future periods. Therefore, the 
span is maximized by the contract    c _   ≡  {1}  τ=1  ∞   . Inserting  c = c′ =   c _    into expres-
sion (9) and simplifying yields  span( W   ∗ (  c _  )) =  π 1  (1 − β ) , which is strictly higher 
than the span of   W   ∗   in the fixed- μ  setting. Correspondingly, the sufficient condition 
for enforcing high effort,  ρ ≤ span( W   ∗ (  c _  )) , is weaker than inequality (5).

Of course, when the players negotiate in a given period, they will want to max-
imize the span not from the current period but from the next period, which allows 
them to support high effort in the current period at the lowest possible monitoring 
level (to save on monitoring costs that they will actually have to pay). Therefore 
they should agree on a contract that makes    c _    the inherited contract in the next 
period. To calculate the monitoring level needed to support high effort in the cur-
rent period, recall that the worker must be rewarded for high output with a bonus in 
continuation value of at least  (1 − δ )β/δ μ , where  μ  is the monitoring level in the 
current period. The best choice for  μ  is the smallest value that satisfies the constraint  
(1 − δ )β/δ μ ≤ span( W   ∗ (  c _  )) , which is

(10)   μ ˆ   =   
 (1 − δ) β

 _  
 π 1   δ (1 − β)    .

To summarize, in the contractual equilibrium the players initially choose con-
tract   c   ∗  =  {  μ   τ  }  τ=1  ∞    defined by   μ   1  =  μ ˆ    and   μ   τ  = 1  for  τ = 2, 3, … . In each 
 subsequent period, the players inherit contract    c _    and renegotiate back to   c   ∗  . In other 
words, they revise their inherited contract by specifying   μ ˆ    in the current period but 

16 If  (1 − δ )β/δ μ   1  > span ( W   ∗  (c′ ) )   then high effort cannot be supported in disagreement and   z   1 (c)  is the same 
as   z   2 (c)  characterized below.
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leave the specified monitoring level at  1  for all future periods. The equilibrium con-
tinuation values and disagreement points are displayed in Figure 2. It is easy to ver-
ify that   μ ˆ    is strictly less than the optimal monitoring level in the fixed- μ  setting, for 
parameter values under which cooperation can be sustained. Therefore, the players 
get a strictly higher joint value from the optimal  semi-stationary contract than from 
the best stationary contract.

C. Verifiable Signal

The example presented in the previous subsections illustrates one of our gen-
eral results:  semi-stationary contracts are optimal in settings with no verifiable 
information. We next show that this result does not extend to all settings with ver-
ifiable information. To do this, we examine an extension of the example in which 
the  stage-game outcome  x  is verifiable. As before, external enforcement entails only 

Figure 2. Contractual Equilibrium with Contractible Monitoring Technology

Notes: Disagreement point      w _     1   is attained by playing   a 1   = 1  under contract     c _    (with monitoring level   μ 
¯

   = 1 )  
and continuing with promised utility   z   1 (  c _  ) + (ρ, − ρ)  if the signal is  x = 1 , but with   z   1 (  c _  )  if  x = 0 . Disagreement 
point     w _     2   is attained by playing   a 1   = 0  under    c _    and continuing with   z   2 (  c _  )  regardless of  x . When     w _     i   is the dis-
agreement point, the parties negotiate to contract   c   ∗   (with monitoring level   μ ˆ   ) and utility   z   i (  c _  ) . Any point in   W   ∗   
is attained by playing   a 1   = 1  under   c   ∗  , making an appropriate transfer, and continuing with   z   2 (  c _  )  if  x = 1 , but 
with   z   1 (  c _  )  if  x = 0 .
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operation of the monitoring technology at the contractually specified level, but now 
the sequence of monitoring levels can be conditioned on past realizations of  x . We 
assume that externally enforced  outcome-contingent transfers are not available; 
such transfers are discussed in the next subsection.

A  semi-stationary contract does not condition the monitoring level on past reali-
zations of  x ; it specifies a monitoring level   μ ˆ    in the current period and a monitoring 
level   μ _   for all future periods regardless of the history of signal realizations. The best 
 semi-stationary contract   c   ∗   is exactly as described in the previous subsection, with   
μ ˆ    given by equation (10) and   μ _  = 1 . Players coordinate on behavior and continu-
ation values as before.

But   c   ∗   is no longer optimal. To see why, recall that the worker will select high 
effort only if the difference between his continuation values following high and 
low signals is at least  (1 − δ )β/δ μ , where  μ  is the monitoring level in the current 
period. Maximizing the difference allows  μ , and hence the cost of monitoring, to 
be minimized. In the initial example, regardless of the contract  c , these continuation 
values were required to be elements of a single set   W   ∗ (c | x) , because  c | x  could not 
depend on   x  (it was unverifiable). However, with  x  now verifiable, the inherited 
contracts  c | 1  and  c | 0  may differ. Rewards and punishments may be enhanced by 
conditioning  c | x  on  x .

Specifically, to reward the worker following a high monitoring signal ( x = 1 ) in 
the current period, the inherited contract  c | 1  should maximize   z  1  2 (c′ )  over  c′ ∈ C , 
and the players should coordinate on   z   2 (c | 1) , the worker’s best continuation value. 
As in the initial example,   z  1  2 ( ⋅ )  is maximized by contract    c _    specifying  μ = 1  
in all periods regardless of the signal realizations.17 Likewise, to best punish the 
worker after a low monitoring signal ( x = 0 ) in the current period,  c | 0  should 
minimize   z  1  1 (c″ )  over  c″ ∈ C , and the players should coordinate on   z   1 (c | 0) . But    c _    
generally does not minimize   z  1  1 ( ⋅ ) . In fact, a stationary contract specifying a lower 
monitoring level may be better, depending on cost parameters. Consider such a con-
tract   c ̃    that specifies  μ =  μ ̃   < 1  in all periods regardless of the signal realiza-
tions. The disagreement point associated with   z   1 ( c ̃  )  involves high effort, as in the 
initial example. We find that if the marginal monitoring cost is sufficiently large at 
the maximal level (specifically, if   π 1  k′(1) > β  ), then   z  1  1 ( c ̃  )  is increasing in   μ ̃    for   μ ̃    
near  1 . This implies that there is a value   μ ̃   < 1  for which   z  1  1 ( c ̃  ) <  z  1  1 (  c _  ) .18

Suppose we design a contract  c  so that  c | 1 =   c _     and  c | 0 =  c ̃   , where the players 
would coordinate on continuation value   z   2 (  c _  )  following the high signal and   z   1 ( c ̃  )  
following the low signal. Such a contract supports high effort in the current period 
with less monitoring than   c   ∗   requires, because   z  1  2 (  c _  ) −  z  1  1 ( c ̃  ) > span( W   ∗ (  c _  )) . The 
associated continuation values and disagreement points are displayed in online 
Appendix Section C.4. Importantly,  c  is not  semi-stationary because the monitoring 
level specified for the following period depends on the verifiable outcome in the 

17 Assuming that the maximum is attained, let  c′  maximize   z  1  2 ( ⋅ ) . Clearly the disagreement point that favors 
player 1 involves low effort in the current period and continuation value   z  1  2 (c′ )  regardless of the signal, so equa-
tion (8) is valid with  c = c′ . Player 1’s payoff is increasing in   μ   1  , implying  c′ =   c _   . 

18 Equation (7) is valid with  c = c′ =  c ̃    and   μ   1  =  μ ̃    if   μ ̃    is close to  1 , because the disagreement behavior 
associated with   z   1 ( c ̃  )  is as described in the initial example. Algebra yields   z   1 ( c ̃  ) = ( β/ μ ̃   − β,  1 − β/ μ ̃   − k(  μ ̃  )) +  
π( L   ∗  − 1 + β + k(  μ ̃  )) . Increasing   μ ̃    reduces the worker’s rent from effort (the first term) but increases the negoti-
ation surplus (the second term). For   μ ̃    near  1 , the latter dominates if   π 1  k′(1) > β .
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current period. The equilibrium level strictly exceeds what can be achieved by any 
 semi-stationary contract.

D. Contingent Transfers

In this subsection, we preview our main result, that  semi-stationary contracts 
are optimal in settings with contingent transfers (external enforcement of arbitrary 
 budget-balanced monetary transfers as a function of the verifiable outcome). Note 
first that adding contingent transfers to the example discussed in the previous sub-
section, where  x  is verifiable, enables the  moral-hazard problem to be solved without 
any relational incentives. It suffices to choose a stationary contract that specifies a 
large monetary bonus for the worker in the event of  x = 1 . However, the prospect of 
being forced to pay a large bonus could tempt the manager to manipulate the signal. 
To better illustrate our main result, we extend the example to allow for  nonverifiable 
signal manipulation by the manager. We show that the contractual equilibrium is 
 semi-stationary, with incentives for effort provided by contingent bonuses, and 
incentives to abstain from manipulation provided by  self-enforcement.

We augment the example so that the manager can take an unverifiable action 
that costlessly “jams the signal.” The manager’s action in the stage game is 
denoted   a 2   ∈  A 2   = {0, 1} , where   a 2   = 0  refers to jamming the signal and   a 2   = 1  
means not jamming it.  Stage-game payoffs are the same as before; they do not depend 
on   a 2   . The outcome is now written  x = ( x 1  ,  x 2   ) ∈ {0, 1} × {0, 1} , where   x 1    is the 
signal realization and   x 2   =  a 2   . If the manager chooses   a 2   = 1  then   x 1    depends 
on   a 1    and  μ  exactly as in the initial example. If the manager chooses   a 2   = 0  then 
with probability  ε  the signal is jammed and   x 1   = 0  regardless of the worker’s 
action, and with probability  1 − ε  the signal realization depends on   a 1    and  μ  as 
before. The probability  ε  is a fixed parameter. Note that   x 1    is verifiable, as in the 
previous subsection, while   x 2    is not verifiable.

Contingent transfers are incorporated as follows. The external contract can spec-
ify, in addition to the monitoring level, a monetary transfer from the manager to 
the worker as a function of the verifiable    x 1   . Let   b 1  ( x 1  ) ∈ ℝ  denote the transfer 
in the event of signal realization   x 1   . The set of stage games  Γ  is parameterized 
by  ( μ,  b 1  (1),  b 1  (0))  and  stage-game payoffs include the expected transfer as a func-
tion of the action profile. A  semi-stationary contract specifies two combinations of 
a monitoring level and contingent transfers:  (  μ ˆ  ,   b ˆ   1  (1),   b ˆ   1  (0))  in force for the current 
period, and  (  μ _ ,    b _   1  (1),    b _   1  (0))  in force for all future periods irrespective of signal 
realizations.

Such a contract turns out to be optimal. A key idea is that, because renegotiation 
ensures that all continuation values in      ∗   have the same joint value, shifts between 
them are equivalent to monetary transfers. So rather than having external enforcement 
of  current-period actions occur through the inherited contract in the next period, by  
specifying  c |(1,  x 2   ) ≠ c |(0,  x 2   )  so that   W   ∗ (c |(1,  x 2  )) ≠  W   ∗ (c |(0,  x 2   )) , it could 
alternatively occur with a monetary transfer in the current period. This is possible 
because the continuation contract  c | x  and the transfer   b 1  (x)  are both conditioned on 
only the verifiable signal   x 1   .

A complication arises, however, because players also rely on  self-enforcement 
(coordinating on continuation values within each set   W   ∗ (c | x) ), and generally they 
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can condition their play on elements of the outcome that are unverifiable, in partic-
ular the manager’s action   a 2   . There is no way to substitute for this using externally 
enforced transfers. But transfers can substitute for shifting from one set of con-
tinuation values   W   ∗ (c |(1,  x 2   ))  to another set   W   ∗ (c |(0,  x 2   )) , as long as the latter set 
has as much scope for enforcing actions in the current period as does the former. 
 Self-enforcement is best served by a large span of continuation values, so, with 
appropriate transfers, it is optimal to specify  c |(1,  x 2   ) = c |(0,  x 2   )  and to let this be 
the contract with the largest span.

The foregoing logic is a key element in the proof of our main result. While the 
general analysis requires additional technical steps, it is straightforward to sum-
marize the equilibrium characterization in the example; a few of the calculations 
are shown in online Appendix Section  C.5. Using the same steps as in the ini-
tial example, we find that the largest span is achieved by the contract    c _    that speci-
fies  μ = 1 ,   b 1  (1) = β , and   b 1  (0) = 0  in all periods regardless of the  stage-game 
outcomes. We obtain  span( W   ∗ (  c _  )) =  π 1  (1 − β )  as before, but now the disagreement 
point associated with   z   1 (  c _  )  requires that  a = (1, 1)  be enforced. The optimal con-
tract   c   ∗   satisfies   c   ∗  | x =   c _    for all  x , and it provides incentives to the worker through 
a  current-period monetary bonus   b 1  (1) −  b 1  (0) > 0 . The players coordinate on the 
manager’s favorite continuation value   z   1 (  c _  )  if   x 2   = 1  (no jamming), and on   z   2 (  c _  )  
if   x 2   = 0 . Adjusting for the expected transfer, this provides incentives to the manager.

The manager’s ability to jam the signal constrains the use of contingent trans-
fers, but nonetheless   L   ∗   is higher than in the initial example. In fact, among the 
examples in this section, those with greater scope for external enforcement exhibit 
higher equilibrium welfare levels, illustrating the general complementarity result we 
derive in the next section.19 To our main point, the optimal contract in this example 
is  semi-stationary, specifying  μ < 1  and a transfer bonus   b 1  (1) −  b 1  (0) = β/μ  
in the current period, and specifying  μ = 1  and   b 1  (1) −  b 1  (0) = β  in all future 
periods regardless of the  stage-game outcomes.

III. Optimal Contracts and  Semi-Stationarity

This section develops our main results, which show that the findings in our lead-
ing example regarding  semi-stationary contracts hold broadly. We begin with these 
general definitions.

DEFINITION 5: A contract  c ∈ C  is stationary if  c | x = c  for every  x ∈  .

DEFINITION 6: A contract  c ∈ C  is  semi-stationary if there is a stationary con-
tract    c _     such that  c | x =   c _     for all  x ∈  . In this case, we say that  c   transitions 
to    c _   .

A stationary contract     c _    always transitions back to itself, so it specifies the 
same stage game  g(  c _  )  in every period regardless of the history. A  semi-stationary 

19 Adding signal jamming to Sections IIB and IIC would not affect equilibrium welfare levels, because those 
examples do not have externally enforced contingent transfers.
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 contract  c  starts with stage game  g(c)  and then specifies  g(  c _  )  in all future periods 
regardless of the history.

The first subsection below provides an algorithm to find an optimal contract in an 
artificial setting in which the players are restricted to  semi-stationary contracts. In 
the subsections that follow, Theorem 1 establishes that  semi-stationarity is indeed 
optimal in contractual settings with externally enforced contingent transfers, pro-
vided that the algorithm has a solution, and Theorem 2 obtains the same result for 
contractual settings with no verifiable information. The algorithm can then be used 
to calculate an optimal contract. The last subsection explains why external enforce-
ment and  self-enforcement are always complementary.

A. Optimization within the Class of  Semi-Stationary Contracts

We introduce two optimization problems that jointly identify a contract that 
attains the maximal level among  semi-stationary contracts. The first optimization 
problem determines the stationary part of the contract by finding the maximal span 
of continuation values that can be supported in the current period, as a function of 
the span of continuation values in the next period. This exercise corresponds to the 
analysis behind equation  (9) in the example in Section  IIB. The second optimi-
zation problem maximizes the joint payoff attained in the current period, assum-
ing that the span of continuation values in the next period is the maximal fixed 
point from the first problem. It corresponds to the analysis behind equation (10) in  
the example.

Because negotiation always leads to the same welfare level, in both optimiza-
tion problems we normalize the continuation values from the action phase so that 
they lie on the line   ℝ  0  2   with zero joint value. The normalization is done by shifting 
 stage-game payoffs along a ray in the direction of relative bargaining powers,   π , 
which translates a payoff vector   u  to the point  u − π( u 1   +  u 2   ) . (Intuitively, this 
corresponds to a bargaining outcome  u + π(L −  u 1   −  u 2   )  with  L  normalized to 0.) 
Likewise, we normalize expected continuation values from the next period to be on 
the line segment   ℝ  0  2 (d ) ≡ {m ∈  ℝ   2  ∣  m 1   +  m 2   = 0 and   m 1   ∈ [0, d ]} , for a given 
span  d .

In the first optimization problem, to maximize the span for the current period we 
look for a stage game  γ = (A, X, λ, u, P )  and action profiles   α   1   and   α   2  , where   α   1   sup-
ports a continuation value that is worst for player 1 and   α   2   supports a continuation 
value that is best for player 1 (worst for player 2). These action profiles must be 
enforced relative to the stage game and some selection of continuation values from 
the start of the next period. For any action profile  α ∈ ΔA  and continuation value 
function  y : X →  ℝ  0  2 (d ) , define

  ω (γ, α, y)  =  (1 − δ)  (u (α)  − π ( u 1   (α)  +  u 2   (α) ) )  + δ  y –  (α)  .

This is the normalized continuation value. Then let  Λ(d )  denote the maximized dif-
ference between player 1’s normalized continuation values, by choice of the stage 
game, enforced action profiles, and continuation value functions:

(11)  Λ (d)  ≡ max  ω 1   (γ,  α   2 ,  y   2 )  −  ω 1   (γ,  α   1 ,  y   1 ) ,
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by choice of

 γ =  (A, X, λ, u, P)  ∈ Γ,  y   1 ,  y   2  : X →  ℝ  0  2  (d) , and  α   1 ,  α   2  ∈ ΔA,

subject to

  α   1  is enforced relative to γ and   y   1 , and  α   2  is enforced relative to γ and   y   2 . 

For the second optimization problem, let  Ξ(d )  denote the maximized joint payoffs, 
by choice of the stage game, enforced action profile, and continuation value function:

(12)  Ξ (d )  ≡ max  u 1   (α)  +  u 2   (α) ,

by choice of

 γ =  (A, X, λ, u, P)  ∈ Γ, y : X →  ℝ  0  2  (d ) , and α ∈ ΔA ,

subject to

 α is enforced relative to γ and y. 

Assume that  Λ(d )  is defined for all  d  and has a largest fixed point, denoted   d   ∗  , and 
that  Ξ( d   ∗ )  exists. Let   γ _  = (  A _  ,   X _  ,  λ _ ,   u _  ,   P _  ) ,   y   1  ,   y   2  ,   α   1  , and   α   2   denote any solution to 
optimization problem (11) for  Λ  evaluated at   d   ∗  . Let   γ   ∗  = ( A   ∗ ,  X   ∗ ,  λ   ∗ ,  u   ∗ ,  P   ∗ ) ,   y   ∗  ,  
and   α   ∗   denote any solution to optimization problem (12) for  Ξ  evaluated at   d   ∗  , so  
Ξ( d   ∗ )  is the maximum value. Define    c _    to be the stationary contract that specifies 
stage game   γ _   in every period, and define   c   ∗   to be the  semi-stationary contract that 
specifies stage game   γ   ∗   for the current period and then transitions to    c _   .

If players were restricted to  semi-stationary contracts,   c   ∗   would be optimal and 
the equilibrium level   L   ∗   would equal  Ξ( d   ∗ ) . Further, there would be a CEV collec-
tion in which  W(  c _  ) = { z   1 (  c _  ),  z   2 (  c _  )}  where, for  j = 1, 2 , the disagreement point is

     w _     j  =  (1 − δ)   u _   ( α   j  )  + δ ( z   1  (  c _  )  +   y –    j  ( α   j ) )  ,

and the bargaining solution implies   z   j (  c _  ) =    w _     j  + π( L   ∗  −    w _    1  
j   −    w _    2  

j   ) . Using these 
expressions, the definition of  ω , and that span of  W(  c _  )  is   d   ∗  , we derive

   z   1  (  c _  )  = ω ( γ _ ,  α   1 ,  y   1 )  + π (1 − δ)   L   ∗  + δ  z   1  (  c _  )  ;

   z   2  (  c _  )  = ω ( γ _ ,  α   2 ,  y   2 )  + π (1 − δ)  L   ∗  + δ  z   2  (  c _  )  + δ (−  d   ∗ ,  d   ∗ )  .

These correspond to equations  (7) and  (8) in the initial example.20 Collecting 
the   z   1 (  c _  )  and   z   2 (  c _  )  terms gives a direct expression of these values.

20 Specifically, substituting for  ω  we see that   z   j (  c _  )  has a  current-period component that reflects the players’ 
sharing of the bargaining surplus, and a  next-period component that consists of the worst continuation value for 
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Although an optimal  semi-stationary contract is meant to be renegotiated every 
period, even if no deviation occurred previously, we do not claim that such “ on-path 
renegotiation” should be seen in reality. In fact, in an enriched model that allows 
the players to send a joint, verifiable message in the negotiation phase, an optimal 
contract can include a provision that renews the equivalent of   c   ∗   if the players issue a 
joint statement of confirmation. For example, many real contracts specify that terms 
can be renewed by mutual agreement.21 Then, rather than having to renegotiate the 
entire contract, the players can negotiate to exercise the joint renewal option and 
make an associated transfer.22 We have left renewal options out of our model for 
simplicity, and to highlight the intertemporal changes in operative contract terms 
that occur in equilibrium.

B.  Semi-Stationarity with Contingent Transfers

Many settings allow for external enforcement of arbitrary  budget-balanced trans-
fers as a function of verifiable outcomes. Our main result is that  semi-stationary 
contracts are optimal in contractual settings with such contingent transfers (under 
some technical conditions sufficient for existence, namely that optimization prob-
lems (11) and (12) have solutions). The algorithm developed in the previous subsec-
tion can then be used to find an optimal contract.

To see how we can describe external enforcement of contingent transfers, suppose 
the players want to write a contract that augments stage game  (A, X, λ, u, P) ∈ Γ  
with a  budget-balanced,  P -measurable transfer function  b : X →  ℝ  0  2   that 
requires player 2 to pay player 1 a transfer of   b 1  (x)  when outcome   x  occurs. Let   
b 
–
 (a) ≡  E x  [b(x) ∣ x ∼ λ(a)]  be the expected transfer given action profile  a ∈ A . 

The availability of this contingent transfer is equivalent to assuming that the stage 
game  (A, X, λ, u +  b 

–
 , P)  is included in  Γ , where  u +  b 

–
  : A →  ℝ   2   is the new payoff 

function that incorporates the transfers.

DEFINITION 7: The contractual setting has externally enforced contingent trans-
fers if for every stage game  (A, X, λ, u, P) ∈ Γ  and every  P -measurable function  
b : X →  ℝ  0  2  , it is the case that  (A, X, λ, u +  b 

–
 , P) ∈ Γ  as well.

Our main result is the following.

THEOREM 1: Suppose the contractual setting has externally enforced contingent 
transfers. If optimization problems (11 ) and (12 ) have solutions for all  d ≥ 0  then 

player 1,   z   1 (  c _  ) , plus a transfer from player 2 to player 1,    y –    j ( α   j  ) .
21 One common phrasing is “subject to unlimited successive renewals upon mutual consent of the parties” (see, 

for example, the Law Insider database of contracts from SEC filings, at lawinsider.com). In law and economics, 
contract renewal has mainly been viewed through the lens of the  hold-up problem: see Blair and Lafontaine (2005) 
on franchising; Dalen, Moen, and Riis (2006) on procurement; and Narasimhan (1989) for a legal perspective.

22 If the players do not send the joint statement of confirmation, and if they do not renegotiate the contract 
entirely, then the contract would implement the equivalent of    c _   . Either party can trigger    c _    by blocking any joint 
action, such as in response to the other party’s refusal to agree to a transfer. An alternative enrichment would involve 
adding a round of verifiable messages and verifiable voluntary transfers prior to negotiation in each period, whereby 
coordinated messages and transfers would be interpreted as exercising joint options. We conjecture that an optimal 
contract that avoids renegotiation would exist, but this is a topic for future study.

http://lawinsider.com
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contractual equilibrium exists and there is a  semi-stationary optimal contract   c   ∗  .  
The level is   L   ∗  = Ξ( d   ∗ ) , where   d   ∗   is the largest fixed point of  Λ  (which exists).

We provide a heuristic argument here, assuming the existence of a CEV collec-
tion with certain properties. This argument expands on the logic described at the end 
of Section IID. The formal proof, in Appendix Section A, follows a different logical 
path that also establishes the existence of a CEV collection.

Suppose there exists a contractual equilibrium and there is a contract    c ̃    whose 
value set   W   ∗ ( c ̃  )  has the greatest span in the maximal CEV collection      ∗  . By defini-
tion, there is an optimal contract   c   ∗∗  ∈ C , but it may not be  semi-stationary. Using 
externally enforced transfers, we will construct another optimal contract   c   ∗   that is 
 semi-stationary.

First, we will construct a stationary contract    c _    from   c ̃   , with the property that   W   ∗ (  c _  )  
=  W   ∗ ( c ̃  ) . Let  (A, X, λ, u, P) = g( c ̃  )  be the stage game specified by   c ̃   . By definition 
of bargaining  self-generation, any continuation value  w ∈  W   ∗ ( c ̃  )  is the Nash bar-
gaining solution relative to some disagreement point    w _    that is   c ̃   -supported relative 
to      ∗  . We construct a contract    c _    with the property that any   c ̃   -supported disagree-
ment point    w _    is also supported by    c _   , where    c _    uses contingent transfers rather than 
variations in  continuation-value sets.

Because all continuation values are at the same level    L   ∗  , variations in con-
vex sets of continuation values act essentially as transfers. Therefore, if contract    
c ̃    calls for the  next-period value set   W   ∗ ( c ̃   | x)  to differ from   W   ∗ ( c ̃  )  for some out-
come  x , we can construct    c _    to instead specify an externally enforced, budget bal-
anced transfer  b(x) = (1, − 1)(δ/(1 − δ ))( z  1  1 ( c ̃   | x) −  z  1  1 ( c ̃  ))  in the current period 
and specify    c _   | x =  c ̃   , without disrupting any incentives in the stage game. There 
are two key elements of this construction. First, because the continuation contract 
mapping   c ̃   | ⋅  is  P -measurable, so is the transfer function   b . Second,  span( W   ∗ ( c ̃  ))  
≥ span( W   ∗ ( c ̃   | x)) , so  self-enforcement is no more constrained by contract    c _    than 
by   c ̃   .23 Further, because this construction implies   W   ∗ (  c _  ) =  W   ∗ ( c ̃  ) , we can mod-
ify    c _    to specify    c _   | x =   c _   . We have thus constructed a stationary contract    c _    with the 
desired property.

Next we construct our  semi-stationary contract   c   ∗   from    c   ∗∗  . Using the same 
steps as above, we now let  (A, X, λ, u, P) = g( c   ∗∗ )  and we specify a transfer of  
 b(x) = (1, −1 )(δ/(1 − δ ))( z  1  1 ( c   ∗∗  | x) −  z  1  1 ( c ̃  )) . Define   c   ∗   to be the  semi-stationary 
contract that specifies the stage game  (A, X, λ, u +  b 

–
 , P)  in the current period and 

then transitions to    c _   . Since it enforces the same actions as   c   ∗∗   does,   c   ∗   also supports 
a continuation value at level   L   ∗   and is thus optimal.

The theorem provides sufficient conditions for existence of a CEV collection 
in terms of whether the optimization problems defining  Λ(d )  and  Ξ(d )  have solu-
tions for all  d ≥ 0 . Sufficient conditions for existence that can be expressed more 
directly on the primitives have eluded us. Appendix Section B2 illustrates some of 
the difficulties.24 We expect, however, that the optimization problems defining  Λ(d )  

23 Compared to the continuation function  y  that was used to   c ̃   -support    w _   , to    c _   -support    w _    we use continua-
tion function  y′  given by  y′ (x) = y(x) + ( z  1  1 ( c ̃   | x) −  z  1  1 ( c ̃  ))(1, − 1) , where   y ′   (x) ∈ co  W   ∗ ( c ̃  )  follows from  y(x)  
∈  W   ∗ ( c ̃   | x)  and  span( W   ∗ ( c ̃  )) ≥ span( W   ∗ ( c ̃   | x)) .

24 In online Appendix Section C.3 we prove that a CEV collection exists if  C  and  Γ  are finite and every stage 
game is finite, but these conditions rule out contingent transfers. One might speculate that a CEV collection should 
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and  Ξ(d )  can be evaluated for relevant applications, as the next section illustrates. 
In any case, constructing an optimal contract with contingent transfers still involves 
computing   d   ∗   from  Λ(d )  and then solving  Ξ( d   ∗ ) .

C.  Semi-Stationarity with No Verifiable Information

Next consider settings in which the external enforcer cannot distinguish between 
any  stage-game outcomes.

DEFINITION 8: The contractual setting has no verifiable information if for every 
stage game  γ = (A, X, λ, u, P) ∈ Γ , the partition  P  is trivial:  P = {X} .

Without verifiable information, a contract  c  can specify the sequence of stage 
games to be played but cannot condition the sequence on the history of  stage-game 
outcomes. For instance, the initial example in Section II has no verifiable informa-
tion, because the external enforcer cannot verify the monitoring signal. The follow-
ing result shows that  semi-stationarity is optimal in such settings.

THEOREM 2: Suppose the contractual setting has no verifiable information. If opti-
mization problems  (11 ) and  (12 ) have solutions for all  d ≥ 0  then contractual 
equilibrium exists and there is an optimal contract   c   ∗   that is  semi-stationary. The 
level is   L   ∗  = Ξ( d   ∗ ) , where   d   ∗   is the largest fixed point of  Λ  (which exists).

PROOF:
We prove this theorem by transforming the contracting environment into one to 

which Theorem 1 applies. For any relational contract setting, augment  Γ  so that 
there are externally enforced contingent transfers. This will change neither the CEV 
collections nor optimization problems (11) and (12), because the absence of verifi-
able information means that only a constant transfer can be specified in any period, 
and the players can already achieve such a transfer in the course of bargaining. From 
Theorem 1, we know contractual equilibrium exists and there is a  semi-stationary 
optimal contract. If this contract specifies selection of  nonzero externally enforced 
transfers, simply replace these with transfers in the bargaining phase and the equi-
librium conditions remain satisfied. ∎

D. Complementarity of External Enforcement and  Self-Enforcement

We conclude this section by observing that strengthening external enforcement 
implies a higher welfare level in contractual equilibrium. External enforcement 
becomes stronger if, for instance, the partition  P  in each stage game becomes finer 

exist if  Γ  were formed by starting with a finite number of finite stage games and then augmenting them with arbitrary 
 contingent transfers, but such speculation is unfounded. Indeed, the optimal stage game outcome might be unen-
forceable, yet be “virtually enforceable” via an unbounded sequence of transfers, as we show in Appendix Section 
B2. One might further speculate that if a finite number of finite stage games were augmented with uniformly 
bounded contingent transfers, then a CEV collection ought to exist, but a bound on transfers can interfere with 
Theorem 1 in problematic cases. We do not view the lack of a general existence guarantee as a practical problem, 
as one can work with a  near-supremum level for a variant of the CEV definition (see online Appendix Section C.2).
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(allowing  c  to be conditioned on more information about the outcome) or if the set 
of enforceable production technologies expands. Recalling that the contractual set-
ting is described by  ( Γ,  c   0 , π) , we can relate two contractual settings most simply by 
inclusion, holding fixed   c   0   and  π : Setting  (  Γ ̃  ,  c   0 , π)  is stronger than setting  ( Γ,  c   0 , π)  
if  Γ ⊂  Γ ̃   . That is, to get a stronger contractual setting we enlarge the set of stage 
games (and thus the set of available contracts), so all of the items in the weaker 
technology are retained.

THEOREM 3: If contractual setting  (  Γ ̃  ,  c   0 , π)  is stronger than  ( Γ,  c   0 , π) ,  
and each setting satisfies the conditions in Theorem  1 or Theorem  2, then the 
 contractual-equilibrium welfare level is weakly higher under  (  Γ ̃  ,  c   0 , π) .25

PROOF:
The result follows from the observation that, in optimization problems  (11) 

and (12), the constraint set under  ( Γ,  c   0 , π)  is a subset of the constraint set under  
 (  Γ ̃  ,  c   0 , π) . ∎

This conclusion contrasts with some of the prior literature in relational con-
tracts, which has found that under specific assumptions on equilibrium selection, 
improving external enforcement can reduce welfare. The key assumption behind the 
prior literature’s result is that (as in Baker, Gibbons, and Murphy 1994, 2002 and 
Schmidt and Schnitzer 1995) after any deviation, the parties permanently discon-
tinue  self-enforced relational arrangements and, instead, in all future periods they 
play a stage game equilibrium under an optimal external spot contract. In contrast, 
contractual equilibrium posits that the parties can always renegotiate both the exter-
nal contract and their  self-enforced arrangements. Thus, when they successfully 
renegotiate following any history, they agree to an optimal combination of exter-
nally enforced and  self-enforced elements.

Theorem 3 is in line with empirical studies that find complementarity between 
the strength of external enforcement and the efficacy of  self-enforcement. For 
example, Johnson, McMillan, and Woodruff (2002) uses the transition of formerly 
planned economies in Eastern Europe and the Soviet Union, where bureaucratic 
controls were replaced by more  market-oriented legal systems, to examine inter-
actions between the courts and relational contracting. The paper finds that infor-
mal arrangements ( self-enforcement) are the main basis for contracting by firms 
in the dataset, and that improvements in legal institutions (enabling better external 
enforcement) are associated with more effective relational contracting and higher 
overall productivity. Further, recent studies of  inter-firm contracting in developed 
economies, including Beuve and Saussier (2012), Poppo and Zenger (2002), and 
Ryall and Sampson (2009), report a positive relation between the extent of “formal 
contracting” (complexity of the contract and its use of external enforcement) and 
 self-enforcement. In this context, Theorem 3 is directly relevant where empirical 
variation entails improvements in production technology and monitoring.26

25 A more general version of this result appears in online Appendix Section C.2.
26 A more general theoretical connection between the use of external enforcement and  self-enforcement 

would require measures of degree in both of these categories and including in the model elements that influence 
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IV. Option Contracts and the Allocation of Decision Rights

This section continues our analysis of a manager and a worker who can 
write  long-term contracts governing their monitoring technology, introduced in 
Section IIB. Here we enrich the contractual setting, allowing the parties to construct 
a menu of options for one of them to verifiably select from, where each option 
specifies a monitoring level and an externally enforced monetary transfer. As in 
Section IIB, the monitoring signal is not verifiable, although both the manager and 
the worker observe it. In this environment with “option contracts” we demonstrate 
the full power of Theorem 1,27 and provide insight regarding the optimal allocation 
of decision rights. Specifically, we find that decision rights are optimally allocated 
to the manager when the manager has high bargaining power, but to the worker 
when the worker has high bargaining power. In both cases welfare is maximized 
by a  semi-stationary contract in which the stationary part offers two menu options, 
while the initial part offers one menu option. Welfare is also higher than in the 
setting without options, illustrating the complementarity between  self-enforcement 
and external enforcement.

The contracting environment now provides an array of stage games, in which 
first one party chooses from a menu of two monitoring/payment pairs,  (  μ   1 ,  p   1 )  and 
 (  μ   2 ,  p   2  ) ; then the transfer   p   j   is made from the manager to the worker; and 
finally the worker selects effort   a 1   ∈ {0, 1}  under the chosen monitoring 
 technology   μ   j  .28 The contract specifies the menu items  (  μ   1 ,  p   1 )  and  (  μ   2 ,  p   2  )  
for each period, so the set of  stage games is given by the feasible  two-option 
menus,  ((  μ   1 ,  p   1 ), (  μ   2 ,  p   2  )) ∈  ([0, 1] × ℝ)   2  .

Recall that if the worker exerts low effort then the monitoring signal is low with 
probability  μ , but if the worker exerts high effort then the signal is high for sure; the 
worker’s cost of high effort is  β ; and the manager incurs monitoring cost  k( μ) . Given  μ  
and span  d , the worker can be induced to exert high effort if  δμ d ≥ (1 − δ )β .

A. Allocating Decision Rights to the Manager

We first consider the case in which decision rights are allocated to the manager. 
The manager can use his discretion to treat the worker differently under disagree-
ment when she is to be rewarded versus when she is to be punished. By Theorem 1, 
the optimal contract is  semi-stationary, with the same menu  ((  μ   1 ,  p   1 ), (  μ   2 ,  p   2  ))  spec-
ified for every future period. For the current period, parties set a specific moni-
toring level  μ  and payment  p  (that is, a menu  (( μ, p), ( μ, p)) ), to maximize their 
attainable joint value. Theorem 1 instructs us to compute the span by finding the 
largest fixed point   d   ∗   of  Λ  (optimization problem (11)), and to compute the level 

degree, such as contracting costs. Lazzarini, Miller, and Zenger (2004) reports evidence of complementarity in an 
experiment that examines variations in contracting cost and the length of relationships.

27 The example in Section IID also applied Theorem 1, but there the monitoring signal was verifiable, so in the 
optimal contract the worker’s incentives came entirely from contractual monetary bonuses. Here the monitoring 
signal is not verifiable, so the worker must be motivated by relational incentives.

28 Since the stage game is not simultaneous, technically we must expand the notion of a stage game to allow for 
simple dynamics, and strengthen Definition 1 to require that an action profile is enforced if it is a subgame perfect 
equilibrium of the relevant induced game, rather than merely a Nash equilibrium. Since this is intuitive, we do not 
provide the strengthened formal definitions.
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by  solving  Ξ( d   ∗ )  (optimization problem (12)). We focus on the case in which high 
effort can be implemented, i.e.,   d   ∗  ≥ ((1 − δ )/δ ) β .

We begin by identifying the stationary part of the optimal contract by finding the 
largest fixed point of   Λ . In optimization problem  Λ(d ) , the objective to be maxi-
mized is the difference in normalized values   ω 1  (γ,  a   2 ,  y   2  ) −  ω 1  (γ,  a   1 ,  y   1 ) , by choice 
of the game  γ , action profiles   a   1   and   a   2  , and normalized continuation value map-
pings   y   1   and   y   2  , subject to enforcement constraints. The constraints ensure that the 
manager’s selection of options and the worker’s choice of efforts are incentive com-
patible. The largest fixed point of  Λ  will be the span of the optimal contract. For 
this example, this is a straightforward problem, so here we just state the result (see 
online Appendix Section C.6 for details).

PROPOSITION 1: In the setting with options contracts selected by the manager, 
optimization problem (11 ) has a solution for all  d ≥ 0 . If  δ ≥ β  then  Λ  has a larg-
est fixed point   d   ∗   satisfying   d   ∗  ≥ ((1 − δ )/δ ) β , and given by the largest solution 
to

(13)  d = 1 − β +  π 2   (k (1)  − k (   (1 − δ) β _ δ d  ) )  .

This span is attained using a stage game with menu items featuring monitoring 
levels   μ   1  = 1  and   μ   2  = (1 − δ )β /δ  d   ∗  ≤ 1 , and payments   p   1   and   p   2   that satisfy

(14)  −  p   1  − k (1)  = 1 −  p   2  − k ( μ   2 )  ;

and by directing the worker to exert high effort (  a  1  1  =  a  1  2  = 1 ) if the manager 
selects the correct option (  a  2  

j   = (  μ   j ,  p   j  ), j = 1, 2 ), but low effort otherwise.

The stationary part (   c _   ) of the optimal contract specifies a stage game with menu 
items  (  μ   1 ,  p   1 ) = (1,  p   1 )  and  (  μ   2 ,  p   2  ) =  ((1 − δ )β/δ d   ∗ ,  p   1  + 1 + k(1) − k(  μ   2  ))  .  
The worker is induced to exert effort both to generate her least favorable and her 
most favorable payoff under disagreement. The worker’s least favored payoff is 
effectuated partly via a low contractual payment (   p   1  <  p   2   ), and partly via a strict 
monitoring level (   μ   1  = 1 ) that prevents the worker from earning any rents from 
effort. The difference between the payments in the two options is made as large as 
possible, subject to the manager being willing to select Option 2 when the worker is 
to be rewarded. In fact, equation (14) is the manager’s binding incentive constraint 
for choosing Option 2, reflecting that if the manager deviates, then the worker exerts 
low effort and the parties coordinate on   z   2 (  c _  )  for any outcome. Moreover, to max-
imize   p   2  , the monitoring level under Option 2 is set to the minimal level   μ   2   that 
induces the worker to exert effort, given the span   d   ∗  .

To explain the expression for  d  (equation (13)), note that under Option 2 the mon-
itoring level   μ   2   is already minimized, so the arrangement under Option 2 is already 
efficient. Without any welfare improvement to negotiate over, the payoffs under 
agreement and disagreement are the same (    w _     2  =  z   2 (  c _  ) ). The worker’s payoff from 
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the action phase when exerting high effort is     w _    1  2  = (1 − δ )(  p   2  − β ) + δ  z  1  2 (  c _  ) , 
hence   z  1  2 (  c _  ) =  p   2  − β .

Under Option  1 the cost of monitoring is maximized, so there is a welfare 
improvement  k(1) − k(  μ   2  )  to be gained by negotiating to the efficient monitor-
ing level   μ   2  . The worker’s payoff from the action phase when exerting high effort 
under disagreement is     w _    1  1  = (1 − δ )(  p   1  − β ) + δ( z  1  1 (  c _  ) + ((1 − δ )/δ ) β ) , 
and she gets her share of the negotiation surplus, so her payoff after negotiating 
to an agreement from Option  1 is   z  1  1 (  c _  ) =  p   1  +  π 1  (k(1) − k(  μ   2  )) . The span is 
thus  d =  p   2  −  p   1  − β −  π 1  (k(1) − k(  μ   2  )) . Substituting for   p   2  −  p   1   from equa-
tion (14) yields equation (13).

With the span   d   ∗   in hand, now we identify the initial part of the optimal contract 
by solving optimization problem  Ξ( d   ∗ ) . The objective is to maximize the welfare 
level by choice of the game  γ , action profile  a , and normalized continuation value 
mapping  y , subject to incentive compatibility constraints. Since we are focusing on 
the case in which   d   ∗  ≥ ((1 − δ )/δ )β , the solution to  Ξ( d   ∗ )  is straightforward: the 
worker should exert high effort, and the cost of the monitoring technology should 
be minimized subject to the worker’s incentive constraint. This entails monitoring 
level   μ   ∗  =  μ   2   and thus optimal welfare level

   L   ∗  = 1 − β − k (  
 (1 − δ) β

 _ δ d   ∗   )  .

There is no need for two distinct menu items, since the payment cannot be condi-
tioned on the monitoring outcome, so the optimal contract   c   ∗   should specify a menu 
of the form  ((  μ   ∗ , p), (  μ   ∗ , p)) . The specific contractual payment  p  is of no impor-
tance, as the players can use voluntary transfers to obtain any desired split of the 
joint value   L   ∗   between them.29 One possibility is  p =  p   2  , which means that con-
tract   c   ∗   would specify the same terms as Option 2 for the current period, and thus 
entail a temporary suspension of Option 1.

In fact, in this setting the optimal contract can be implemented by a stationary 
contract with the two options  ((  μ   1 ,  p   1 ), (  μ   2 ,  p   2  ))  specified for every period. This is 
possible since Option 2 implements the optimal welfare level   L   ∗   under disagree-
ment. By choosing the payment   p   2   such that the payoff   z   2 (  c _  )  accords with their 
desired division of the surplus   L   ∗   (and adjusting   p   1   to maintain the optimal span), 
the parties can achieve their optimal agreement outcome by agreeing each period to 
implement Option 2, and do this in the same way as Option 2 is implemented under 
disagreement. In this setting a stationary contract with two options is thus sufficient, 
where one option has mild monitoring and is selected every period in equilibrium; 
and the other option has strict monitoring and is selected only if disagreement arises 
after a low monitoring signal.

The contractual equilibrium is illustrated in Figure 3. The manager’s decision 
rights enable the parties to support a larger span than the contract from Section IIB, 
where the contractual setting did not allow for options. The span here is at least  

29 The foregoing analysis leaves both   p   1   and  p  as free parameters. As noted,  p  does not matter at all. Somewhat 
in contrast,   p   1   determines where the value set of the optimal contract is located, although it does not affect its level 
or span. Nonetheless, at the time the parties agree on their contract, they can use their voluntary transfer during 
negotiation to offset any change in   p   1  , if for any reason they select a   p   1   that generates a value set that does not 
contain their desired continuation value. 
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1 − β , and even greater as the manager’s bargaining power   π 2    increases, whereas 
the span without options was merely   π 1  (1 − β ) . The larger span gives the worker 
 higher-powered incentives, which the parties use to reduce their monitoring costs 
on the equilibrium path. When the manager has higher bargaining power, he takes 
a greater share of the surplus when renegotiating out of a situation (under disagree-
ment after a low monitoring signal) in which Option 1 is to be chosen, which shifts 
endpoint   z   1 (  c _  )  toward a lower worker payoff and enlarges the span.

In practical terms, we can interpret   p   1   as the worker’s base salary; then she earns 
a small bonus after low monitoring signals (awarded during renegotiations in return 
for agreeing to reduce the monitoring level) and a large bonus after high monitoring 
signals. Only if a disagreement arises after a low monitoring signal does the worker 
earn merely   p   1  . While the manager has decision rights, the menu of options con-
strains him to award either a zero bonus or a large bonus (   p   2  −  p   1  ) under disagree-
ment. The large difference between these bonuses is a major contributor to the large 
span of the optimal contract; the difference is constrained only by the manager’s 
incentive constraint for choosing the right option. This incentive constraint is rela-
tively mild because the zero bonus is paired with high monitoring costs, and because 
the worker will shirk if the manager chooses the wrong option.

B. Allocating Decision Rights to the Worker

In a contractual setting that allows for options contracts, it may be possible to 
allocate decision rights to either party. In this section we show that it can be optimal 
to allocate decision rights to the worker, if she has sufficient bargaining power.

Figure 3. Contractual Equilibrium with Managerial Decision Rights

Notes: Figures 3 and 4 are drawn to scale using the same parameters as in Figure 1. Transfers not pinned down 
in the analysis are chosen so that   z  1  1 (  c _  ) = 0 . Disagreement point      w _     1   is attained by choosing option  (1,  p   1 ) , 
playing   a 1   = 1 , and continuing with promised utility   z   1 (  c _  ) + (ρ, − ρ)  if the signal is  x = 1 , but   z   1 (  c _  ) if  x = 0  . 
When     w _     1   is the disagreement point, the parties renegotiate to   z   1 (  c _  ) . Disagreement point     w _     2   is attained by choos-
ing  (  μ   ∗ ,  p   2  ) , playing   a 1   = 1 , and continuing with   z   2 (  c _  )  if  x = 1 ; but with   z   1 (  c _  )  if  x = 0 . Since     w _     2   is efficient,  
  z   2 (  c _  ) =    w _     2  .
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The optimization problem  Λ(d )  with worker decision rights has the same objec-
tive function and worker’s effort incentive constraints as the case with manager deci-
sion rights. In place of the manager’s incentive constraint, the worker now has an 
additional incentive constraint for choosing the appropriate option from the menu. 
In online Appendix Section C.6 we show the following.

PROPOSITION 2: In the setting with options contracts selected by the 
worker, optimization problem  (11 ) has a solution for all  d ≥ 0 , and for  δ ≥  
β/ ( π 1   (1 − β)  + β)   there is a largest fixed point   d   W   of  Λ  satisfying   d   W  ≥  
((1 − δ)/δ) β . It is the largest solution to

(15)  d =  π 1   (1 − β + k (1)  − k (  
 (1 − δ) β

 _ δd
  ) )  .

This span is attained using a stage game with menu items featuring monitoring  
levels   μ   1  = (1 − δ )β/δ d   W  ≤ 1  and   μ   2  = 1 ; payments   p   1   and   p   2   that satisfy

(16)   p   2  =  p   1  + β/ μ   1  − β ;

and by directing the worker to exert high effort (  a  1  1  = 1 ) if Option 1 is correctly 
selected, but low effort (  a  1  2  = 0 ) if Option 2 is correctly selected or if the wrong 
option is selected.

The stationary part (   c _   ) of an optimal contract thus specifies a stage game with 
menu items  (  μ   1 ,  p   1 ) =  ((1 − δ )β/δ d   W ,  p   1 )   and  (  μ   2 ,  p   2  ) =  (1,  p   1  + β/ μ   1  − β)  .

Under contract    c _    the worker is punished under disagreement by being induced 
to select Option  1, earn payment    p   1  , exert high effort, and receive continuation 
value   z   2 (  c _  )  if the monitoring signal is high. Since   μ   1   is the lowest monitoring level 
that induces high effort, welfare is maximal (conditional on the span), leaving no 
welfare improvement to negotiate over. The worker’s payoff under both disagree-
ment and agreement is thus   z  1  1 (  c _  ) =  p   1  + β/ μ   1  − β , where the latter two terms 
constitute the worker’s rent.

In contrast, to reward the worker under contract    c _   , in disagreement she is 
induced to select Option  2, earn payment    p   2  , exert low effort, and receive con-
tinuation value    z   2 (  c _  ) . The payment    p   2   is set as large as possible relative to    p   1  , 
subject to the constraint that the worker is willing to select Option 1 when appro-
priate; equation  (16) expresses this constraint in binding form.30 In addition, in 
this case the cost of monitoring is maximized (   μ   2  = 1 ) in order to punish the 
 manager.31 This yields a large welfare improvement to be shared when the parties 
 negotiate. The worker gets her share of this improvement, and thus, gets payoff  

30 The worker is deterred from selecting the wrong Option 2 by the threat that the parties will then coordinate on 
her worst payoff   z   1 (  c _  )  for any signal; this just suffices when payments satisfy equation (16). 

31 We assume that a high monitoring level   μ   2   can be enforced, even if it is intended that the worker should shirk. 
This is in effect a way for the parties to “burn money” in this setting. An alternative interpretation could be that a 
third party, e.g., a supplier of monitoring equipment, is entitled to a payment  k(  μ   2  )  under this option, irrespective 
of whether the equipment is installed.



2182 THE AMERICAN ECONOMIC REVIEW JULY 2020

  z  1  2 (  c _  ) =  p   2  +  π 1  (1 − β − k(  μ   2  ) + k(1)) . Accounting for equation (16), we then 
see that the span must satisfy equation (15).

The contractual equilibrium is illustrated in Figure 4. When the worker has a lot 
of bargaining power, she takes a large share of the surplus when renegotiating out of 
a situation (under disagreement after a high monitoring signal) in which Option 2 is 
to be chosen, which shifts endpoint   z   2   toward a higher worker payoff and enlarges 
the span. In contrast, there is no surplus to be negotiated over when Option 1 is to be 
chosen, so the worker’s bargaining power has no effect on endpoint   z   1  .

Comparing equations (13) and (15), we see that   d   W  >  d   ∗   if   π 1    is sufficiently 
large. Thus, there will be a threshold   π  1  ∗  ∈ (0, 1)  such that allocating decision rights 
to the worker generates a larger span than allocating decision rights to the man-
ager whenever the worker’s bargaining power is sufficiently high (  π 1   >  π  1  ∗  ). The 
larger span yields  higher-powered incentives, enabling reduced monitoring costs 
and greater welfare.

Our analysis provides a new explanation for why a contract may optimally allocate 
limited decision rights to the worker. When the worker has high bargaining power, 
she will capture a large share of any renegotiation surplus, making it desirable to 
specify a contract in which the renegotiation surplus is large when the worker is to 
be rewarded but small when she is to be punished. As we have shown, when decision 
rights are contractible, allocating them to the worker facilitates such a contract.

Figure 4. Contractual Equilibrium with Worker Decision Rights

Notes: Disagreement point     w _     1   or any other point in   W   ∗   is attained by choosing option  (  μ   1 ,  p   1 ) , playing   a 1   = 1 , and 
continuing with promised utility   z   2 (  c _  )  if the signal is  x = 1 , but with   z   1 (  c _  )  if  x = 0 . Since     w _     1   is efficient,   z   1 (  c _  )  
=    w _     1  . Disagreement point     w _     2   is attained by choosing  (1,  p   2  ) , playing   a 1   = 0 , and continuing with   z   2 (  c _  )  regard-
less of  x . When     w _     2   is the disagreement point, the parties renegotiate to   z   2 (  c _  ) .
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V. Related Literature

The analysis of relational contracts was initiated by Klein and Leffler (1981), 
Shapiro and Stiglitz (1984), Bull (1987), and MacLeod and Malcomson (1989).32 
Levin (2003) showed that with transfers, stationary contracts are optimal in 
 time-invariant environments. Levin also observed that optimal stationary contracts 
are “strongly optimal” in the sense that the continuation contract at any feasible 
history is optimal from that point onward. Goldlücke and  Kranz (2013) showed 
that with transfers, perfect monitoring, and no external enforcement,  Pareto-optimal 
subgame perfect payoffs and “strongly optimal” payoffs can generally be found by 
restricting attention to a simple class of stationary contracts.

Relative to  renegotiation-proofness, contractual equilibrium entails a different 
approach to equilibrium selection. The contrasts are discussed in depth in Miller 
and Watson (2013). Suffice it here to say that, unlike contractual equilibrium, rene-
gotiation proofness rules out renegotiation rather than modeling it explicitly, and 
thus does not account for the possibility of disagreement. Safronov and Strulovici 
(2018) also models renegotiation explicitly and allows for disagreements in a 
repeated game setting, without external enforcement. Their approach to bargaining 
is more permissive, allowing players to be punished for proposing Pareto improve-
ments, and hence their solution concept makes substantially less sharp predictions 
than does contractual equilibrium.

The literature has shown that optimal relational contracts in  time-invariant 
environments with limited external enforcement may be  nonstationary due to 
one party’s limited commitment to a  long-term contract (Ray 2002), limited lia-
bility (Fong and Li 2017), or persistent private information (Martimort, Semenov, 
and Stole 2017). No such features are present in the model analyzed here; rather we 
show that limited external enforcement alone may make the equilibrium contract 
 nonstationary. As noted in the introduction,  nonstationarities arise also in the com-
plementary model of Kostadinov (2019).

On the theme of external enforcement operating in concert with  self-enforcement, 
Iossa and Spagnolo (2011) has pointed out that it is common practice to write con-
tracts that contain inefficient clauses, but where these clauses are ignored in equi-
librium. They explain this practice by observing that such contracts can be used as a 
credible threat to sustain a more efficient outcome. Bernheim and Whinston (1998) 
emphasizes that, when some aspects of performance are unverifiable, it is often opti-
mal to leave other verifiable aspects of performance unspecified, so optimal con-
tracts are less complete than they could have been.33 In a contractual equilibrium, 
the optimal contract may entail such flexibility. Further, flexibility in the form of 
options can be valuable, and then the allocation of decision rights is relevant.

32 While the formal literature starts with Klein and Leffler, the concept of relational contracts was first defined 
and explored by legal scholars (e.g., Macaulay 1963, Macneil 1978).

33 Iossa and  Spagnolo (2011) examines a repeated  principal-agent model in which, in each period, players 
have the option to trigger penalties specified by the contract.  Long-term contracts are restricted to be stationary. 
Renegotiation is costly and disagreement results in adherence to an inefficient external contract in all future periods. 
Bernheim and Whinston (1998) examines a class of  two-period contracting problems with both external enforce-
ment and  self-enforcement. 



2184 THE AMERICAN ECONOMIC REVIEW JULY 2020

Baker, Gibbons, and Murphy (2011) also demonstrates how allocation of such 
rights matters in relational contracting, but via a channel different from ours. They 
analyze how governance structures (allocations of control) can facilitate relational 
contracts that improve on spot transactions in settings where such transactions 
would produce inefficient adaptation to changing circumstances. Relatedly, Barron 
et  al. (2019) analyzes  self-enforced agreements that facilitate efficient adapta-
tion and show how these agreements, combined with an external contract, induce 
 state-dependent  decision-making that improves upon the expected payoffs under 
either external contracting or relational contracting alone. Their theoretical model 
assumes stationarity of equilibrium strategies and Nash reversion (permanent pun-
ishment following any deviation).

Finally, a considerable literature has investigated the implications of renego-
tiation and the “ hold-up problem” in  short-term trading relationships in which 
unverifiable investments are followed by renegotiation and then verifiable trade.34 
Researchers have shown that the  hold-up problem can be alleviated in some 
 short-term trading relationships, in particular in settings of “ own-investment” 
(e.g., Aghion, Dewatripont, and  Rey 1994; Nöldeke and  Schmidt 1995; Edlin 
and Reichelstein 1996). Results in this literature rely on complementarities, spe-
cifically that investment decisions influence the value of trade. In our model, 
as with most in the  relational-contracting literature, all actions that affect the 
surplus occur at the same time, meaning that production and delivery are inte-
grated or simultaneous. Thus, the conditions for achieving efficiency that 
are developed in the  hold-up literature are not present here. It would be inter-
esting in future work to examine settings with technological state variables, 
where the actions taken in one period influence the payoffs received in future 
periods.

VI. Conclusion

This paper makes four related contributions. First, we introduce a flexible 
model of  long-term contractual relationships with external enforcement. The 
contracting parties can write an arbitrary  nonstationary  long-term contract that 
specifies a stage game for them to play as a function of the verifiable history. The 
details of the contracting environment are represented by the collection of avail-
able stage games. We extend contractual equilibrium (Miller and Watson 2013) to 
this environment, to allow for renegotiation, bargaining power, and the possibility 
of disagreement.

Second, we show that  semi-stationary contracts are optimal in two important 
classes of contracting environments: those with no verifiable information, and those 
with externally enforced contingent transfers. In a  semi-stationary contract, there 
are special terms for the present period, conducive to high payoffs; and there are sta-
tionary terms for all future periods, inducing the greatest span of continuation val-

34 Prominent entries include Hart and Moore (1988, 1999), Nöldeke and Schmidt (1995), Che and Hausch 
(1999), Segal (1999), and Maskin and Tirole (1999); see Bolton and Dewatripont (2005) for a survey. Most closely 
related are models with individual trade actions, such as Watson (2007), Evans (2008), and Buzard and Watson 
(2012). Because our theory treats renegotiation explicitly and incorporates bargaining power, negotiations in a 
contractual equilibrium operate similarly to what is explored in the  hold-up literature. 
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ues consistent with incentives. Unlike arbitrary  nonstationary  long-term contracts, 
 semi-stationary contracts are tractable, and we provide a method for optimizing 
them.

Third, we show that, in contractual equilibrium,  self-enforcement and external 
enforcement are always complementary: if the external enforcement becomes stron-
ger, the welfare level in contractual equilibrium becomes higher.

Finally, we analyze a  principal-agent model with moral hazard, where the man-
ager and the worker can contractually specify their monitoring technology. In the 
simplest case, with no verifiable information, we show that the optimal contract 
specifies mild monitoring for the current period and intense monitoring for all 
future periods. In each period, the parties renegotiate back to this same contract, 
so on the equilibrium path they always operate under mild monitoring. The intense 
monitoring specified for the future facilitates incentives for the worker. We ana-
lyze several extensions of this model, most notably by allowing the parties’ con-
tract to allocate decision rights over the monitoring technology. The fact that the 
decision (one party’s choice from a menu of monitoring and payment combina-
tions) is verifiable enhances the power of incentives. Depending on their relative 
bargaining power, it can be optimal to allocate decision rights to either the man-
ager or the worker.

We hope these contributions have laid the groundwork for continued research 
on  long-term contracts and the interaction between external enforcement and 
 self-enforcement. While our results on  semi-stationarity may apply to many interest-
ing cases, there are many others which may require more complicated  nonstationary 
contracts, for instance, if there are  limited-liability constraints or if the technological 
environment itself is  nonstationary.

Appendix A. Proof of the Main Result

This section  proves Theorem  1. The proof proceeds with a series of lemmas, 
interspersed with some guiding comments and statements about notation.

LEMMA 2:  Λ  has a maximal fixed point, denoted   d   ∗  .

PROOF OF LEMMA 2:
Recall that  ω(γ, α, y)  denotes the normalized continuation value if in the current 

period  α  is played in stage game  γ = (A, X, λ, u, P )  and the continuation value in 
the next period is given by  y : X →  ℝ  0  2  . This was defined in Section IIIA. For a 
given span  d , let  γ ,   y   1  ,   y   2  ,   α   1  , and   α   2   solve optimization problem  (11) to deter-
mine  Λ(d ) , and let  u  be the payoff function for stage game  γ . From the definition 
of  ω  we have that

  Λ (d)  =  (1 − δ )   u 1   ( α   2 )  + δ   y –   1  2  ( α   2 )  −  π 1   (1 − δ )  ( u 1   ( α   2 )  +  u 2   ( α   2 ) ) 

 −  [ (1 − δ )   u 1   ( α   1 )  + δ   y –   1  1  ( α   1 ) ]  +  π 1   (1 − δ )  ( u 1   ( α   1 )  +  u 2   ( α   1 ) )  .
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Recall that we assumed joint payoffs in stage games are bounded uniformly below by  
− ϑ  and above by  ϑ . Therefore   u 1  ( α   2  ) +  u 2  ( α   2  ) ≥ − ϑ  and   u 1  ( α   1 ) +  u 2  ( α   1 ) ≤ ϑ ,  
and we have

(A1)  Λ (d )  ≤  (1 − δ)   u 1   ( α   2 )  + δ   y –   1  2  ( α   2 ) 

 −  [ (1 − δ)   u 1   ( α   1 )  + δ   y –   1  1  ( α   1 ) ]  + 2 π 1   (1 − δ) ϑ .

The following four inequalities, in order, follow from enforcement of   α   1   (in partic-
ular that player 1 cannot gain by deviating to   α  1  2   ), that the joint  stage-game payoff 
exceeds  − ϑ , enforcement of   α   2   (in particular that player 2 cannot gain by deviating 
to   α  2  1   ), and that the joint  stage-game payoff is no greater than  ϑ :

  −  [ (1 − δ)   u 1   ( α   1 )  + δ   y –   1  1  ( α   1 ) ]  ≤ −  (1 − δ)   u 1   ( α  1  2 ,  α  2  1 )  − δ   y –   1  1  ( α  1  2 ,  α  2  1 )  ,

  0 ≤  (1 − δ)   u 1   ( α  1  2 ,  α  2  1 ) 

 +  (1 − δ)   u 2   ( α  1  2 ,  α  2  1 )  +  (1 − δ) ϑ ,

  0 ≤  (1 − δ)   u 2   ( α   2 )  + δ   y –   2  2  ( α   2 )  

 −   (1 − δ)  u 2   ( α  1  2 ,  α  2  1 )  − δ   y –   2  2  ( α  1  2 ,  α  2  1 )  ,

  0 ≤ −  (1 − δ)   u 2   ( α   2 )  −  (1 − δ)   u 1   ( α   2 )  +  (1 − δ) ϑ .

Summing these inequalities yields

 −  [ (1 − δ)   u 1   ( α   1 )  + δ   y –   1  1  ( α   1 ) ]  

  ≤ − δ   y –   1  1  ( α  1  2 ,  α  2  1 )  − δ   y –   2  2  ( α  1  2 ,  α  2  1 )  + δ   y –   2  2  ( α   2 )  −  (1 − δ)   u 1   ( α   2 )  + 2 (1 − δ) ϑ .

Substituting the bracketed  left-side terms into equation (A1) and simplifying, we 
obtain

  Λ (d)  ≤ 2 (1 +  π 1  )  (1 − δ) ϑ − δ   y –   1  1  ( α  1  2 ,  α  2  1 )  − δ   y –   2  2  ( α  1  2 ,  α  2  1 )  .

Because    y –   1  1 ( α  1  2 ,  α  2  1  ) ∈ [0, d ]  and    y –   2  2 ( α  1  2 ,  α  2  1  ) ∈ [− d, 0] , we conclude that

(A2)  Λ (d)  ≤ 2 (1 +  π 1  )  (1 − δ) ϑ + δd .

In words,  Λ(d )  is bounded above by a line with slope  δ < 1 . We thus know that  
Λ(d ) < d  for all  d >  d 

–
   where   d 

–
   solves   d 

–
  = 2(1 +  π 1  )(1 − δ )ϑ + δ d 

–
  . Clearly  

Λ  is increasing, and since  Λ(0) ≥ 0  we know that the restriction of  Λ  to subdomain  
[0,  d 

–
  ]  maps to the same set, and thus  Λ  has a maximal fixed point   d   ∗   by Tarski’s 

 fixed-point theorem. ∎
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As noted in Section  IIIA, let   γ _  = (  A _  ,   X _  ,  λ _ ,   u _  ,   P _  ) ,   y   1  ,   y   2  ,   α   1  , and   α   2   
denote any solution to optimization problem  (11) for  Λ  evaluated at    d   ∗  . Let   γ   ∗   
= ( A   ∗ ,  X   ∗ ,  λ   ∗ ,  u   ∗ ,  P   ∗ ) ,   y   ∗  , and   α   ∗   denote any solution to optimization problem (12) 
for  Ξ  evaluated at   d   ∗  . Define    c _    to be the stationary external contract that specifies 
stage game   γ _   in every period, and define   c   ∗   to be the  semi-stationary contract that 
specifies stage game    γ   ∗   for the current period and then transitions to     c _   . We will 
eventually demonstrate that   c   ∗   is optimal.

For any stage game  γ = (A, X, λ, u, P) , let  Z (γ, d )  denote the set of normalized 
continuation values that can be achieved in the induced game where players engage 
in  γ  and then coordinate on continuation values in the set   ℝ  0  2  (d ) , for a given span  d :

  Z (γ, d)  ≡  {ω (γ, α, y)  ∣ y : X →  ℝ  0  2  (d) ; α is enforced relative to γ and y}  .

By definition of   γ _  , we have  span(Z ( γ _ ,  d   ∗ )) =  d   ∗   and  Z ( γ _ ,  d   ∗ )  attains its span.

LEMMA 3: For any  L ∈ ℝ , take as given a collection   =  {W(c′ )} c′∈C    with at 
least one nonempty set and satisfying   w 1   +  w 2   = L  for every  w ∈ W(c′ )  and  
c′ ∈ C . Let  d  be any number satisfying  d ≥ sup {span(W(c′ )) ∣ c′ ∈ C } . Consider 
any  c ∈ C  and  w ∈  ℝ   2   such that  w   is  c -supported relative to   . It is the case 
that   w 1   +  w 2   ≤ (1 − δ )Ξ(d ) + δL .

PROOF OF LEMMA 3:
Let  (A, X, λ, u, P) = g(c) . From the definition of  c -support, there exists  α ∈ ΔA  

and  y : X →  ℝ   2   such that  y(x) ∈ co W(c | x)  for all  x ∈ X ,  α  is enforced relative 
to  g(c)  and  y , and  w = (1 − δ )u(α) + δ  y – (α) . Because  d ≥ span(W(c | x)) , every 
point in  W(c | x)  has joint value  L  for all  x ∈ X , and  c | ⋅  is  P -measurable, we can find 
a  P -measurable function  b : X →  ℝ  0  2   such that

(A3)  co W (c | x)  ⊂  ℝ  0  2  (d)  +   1 − δ _ δ   b (x)  + πL 

for every  x ∈ X . The corresponding expected transfer function   b 
–
  : A →  ℝ  0  2   is 

given by   b 
–
 (a) ≡  E x  [b(x) ∣ x ∼ λ(a)]  for every  a ∈ A . Let  γ′ ≡ (A, X, λ, u +  b 

–
 , P) .  

Because stage game   γ′  merely adds  P -measurable transfers to stage game   γ , we 
know  γ′ ∈ Γ  by the assumption of externally enforced contingent transfers.

Let us define  y′ : X →  ℝ   2   by

(A4)  y′ (x)  ≡ y (x)  − πL ()  −   1 − δ _ δ   b (x)  

for every  x ∈ X . Expressions  (A3) and  (A4) imply that  y′  is a function from  X  
to   ℝ  0  2 (d ) . Substituting for  y′ , we see that the induced game

(A5)    ⟨  A,  (1 − δ) u ( ⋅ )  +  (1 − δ)  b 
–
  ( ⋅ )  + δ  y – ′ ( ⋅ )  ⟩    

is equivalent to induced game    ⟨  A, (1 − δ )u( ⋅ ) + δ  y – ( ⋅ ) ⟩     up to the constant  
 πδL( )  in the payoff function, which establishes that  α  is enforced relative to  γ′  
and  y′ . Because  γ′  and  y′  are feasible in optimization problem (12) for  Ξ(d ) , we con-
clude that   u 1  (α) +   b 

–
  1  (α) +  u 2  (α) +   b 

–
  2  (α) ≤ Ξ(d ) . Since    b 

–
  1  (α) +   b 

–
  2  (α) = 0 ,  
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this means   u 1  (α) +  u 2  (α) ≤ Ξ(d ) . Recalling that  w = (1 − δ )u(α) + δ  y – (α) , 
we have thus established   w 1   +  w 2   ≤ (1 − δ )Ξ(d ) + δ L . ∎

Hereafter, it is useful to represent bargaining  self-generation with the operator

(A6)  B ( c ˆ  , )  ≡  {  w _   + π (L ()  −    w _   1   −    w _   2  )   |     w _   is  c ˆ  -supported relative to }  ,

assuming  L( )  exists and there exists a   c ˆ   -supported value; otherwise, let  B( c ˆ  ,  )  
≡ ∅ . Then a collection    is BSG if  W(c) ⊂ B(c,  )  for every  c ∈ C . The next 
lemma identifies the collection described at the end of Section IIIA.

LEMMA 4: There is a BSG collection   =  {W(c)} c∈C    for which  span(W(  c _  ))  
=  d   ∗  ,  W(  c _  )  attains its span,  L( ) = Ξ( d   ∗ ) , and  W( c   0  ) ≠ ∅ .

PROOF OF LEMMA 4:
First, any action profile  α  that is enforced relative to   γ _   and some  y :   X _   →  ℝ  0  2 ( d   ∗ )  

is also enforced relative to   γ _   and  y( ⋅ ) + (k, Ξ( d   ∗ ) − k) , for any constant  k ∈ ℝ , 
because the two induced games are equivalent up to a constant in the payoffs. Suppose 
that

(A7)  W (  c _  )  =  (k, Ξ ( d   ∗ )  − k)  +  { (0, 0) ,  ( d   ∗ , −  d   ∗ ) }  

and let us presume for now that  L( ) = Ξ( d   ∗ ) . By writing the resulting payoff 
in the induced game for any enforced  α  and comparing the definitions of opera-
tors  B  and  Z , a little algebra reveals that  z ∈ Z ( γ _ ,  d   ∗ )  if and only if  z + Ξ( d   ∗ )π +  
δ(k − Ξ( d   ∗ )  π 1  )(1, − 1) ∈ B(  c _  ,  ) . In other words,

(A8)  B (  c _  ,  )  = Z ( γ _ ,  d   ∗ )  + Ξ ( d   ∗ ) π + δ (k − Ξ ( d   ∗ )   π 1  )  (1, − 1)  .

Since  B(  c _  ,  )  is a translation of  Z ( γ _ ,  d   ∗ ) , it attains its span   d   ∗  . We have pre-
sumed that the level of    is  Ξ( d   ∗ ) , so   w 1   +  w 2   = Ξ( d   ∗ )  for every  w ∈ B(  c _  ,  ) . 
Therefore, the endpoints of  B(  c _  ,  )  can be written as a set

(A9)   (k′, Ξ ( d   ∗ )  − k′)  +  { (0, 0) ,  ( d   ∗ , −  d   ∗ ) }  

for some  k′ ∈ ℝ . An implication is that equation (A8) implicitly defines a mapping 
from  k  to  k′  (compare expressions (A7) and (A9)). Clearly it is a contraction map-
ping and its fixed point is   k   ∗  = Ξ( d   ∗ )  π 1   +  ω 1  ( γ _ ,  α   1 ,  y   1 )/(1 − δ ) , where   α   1   and   y   1   
are given by the solution of optimization problem (11) (noting that   ω 1  ( γ _ ,  α   1 ,  y   1 )  is 
the endpoint of  Z ( γ _ ,  d   ∗ )  that favors player 2). Setting

  W (  c _  )  ≡  ( k   ∗ , Ξ ( d   ∗ )  −  k   ∗ )  +  { (0, 0) ,  ( d   ∗ , −  d   ∗ ) }  ,

we thus have  W(  c _  ) ⊂ B(  c _  ,  )  regardless of how we define  W(c)  for  c ≠   c _   .
Next we specify  W( c   0  ) . Let   γ   0  = ( A   0 ,  X   0 ,  λ   0 ,  u   0 ,  P   0  )  denote the stage game that 

default contract   c   0   specifies for every period, and let   α   0   be a Nash equilibrium of 
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this stage game (which we have assumed exists). Let  W( c   0  )  be the singleton set 
specified as follows:

  W ( c   0 )  ≡  { u   0  ( α   0 )  + π (Ξ ( d   ∗ )  −  u  1  0  ( α   0 )  −  u  2  0  ( α   0 ) ) }  .

It is evident that  W( c   0  ) ⊂ B( c   0 ,  )  under our presumption that the level of    is  
Ξ( d   ∗ ) .

So far we have specified  W(  c _  )  and  W( c   0  ) . For every other contract  c ∉ {  c _  ,  c   0  } , 
specify  W(c) = ∅ , which completes the construction of   . As verified above, the 
BSG conditions hold, presuming that the level of    is  Ξ( d   ∗ ) .

Finally, we justify our presumption that  L( ) = Ξ( d   ∗ ) . Recall that   γ   ∗  ,   y   ∗  ,  
and   α   ∗   solve optimization problem  (12) for  Ξ  evaluated at   d   ∗  . This means  
  y   ∗   maps to   ℝ  0  2 ( d   ∗ ) ,   α   ∗   is enforced relative to   γ   ∗   and   y   ∗  , and  Ξ( d   ∗ ) =  u  1  ∗ ( α   ∗ ) +  
 u  2  ∗ ( α   ∗ ) . Because  span(W(  c _  )) = span(Z ( γ _ ,  d   ∗ )) =  d   ∗  , we know that   y   ∗ (x) +  
( k   ∗ , Ξ( d   ∗ ) −  k   ∗ ) ∈ W(  c _  )  for every  x ∈  X   ∗  . Therefore, noting that   α   ∗   is 
enforced relative to   γ   ∗   and   y   ∗  + ( k   ∗ , Ξ( d   ∗ ) −  k   ∗ ) , we have that continuation 
value  w = (1 − δ )  u   ∗ ( α   ∗ ) + δ   y –    ∗ ( α   ∗ ) + δ( k   ∗ , Ξ( d   ∗ ) −  k   ∗ )  is   c   ∗  -supported relative 
to   . It is clearly the case that   w 1   +  w 2   = Ξ( d   ∗ ) .

By the construction of    we have  sup {span(W(c′ )) ∣ c′ ∈ C } = span(W(  c _  ))  
=  d   ∗  . Letting  L = Ξ( d   ∗ )  and  d =  d   ∗  , Lemma 3 implies that no contract can sup-
port, relative to   , a joint value in excess of  Ξ( d   ∗ ) . Therefore

  max { w 1   +  w 2   ∣ c ∈ C and w is  c-supported relative to  }  = Ξ ( d   ∗ )  .

We have thus constructed a BSG collection with the required properties. ∎

The BSG collection constructed in Lemma 4 is our candidate CEV collection. To 
demonstrate that it is, in fact, a CEV collection, we must show that there is no other 
BSG collection that has a strictly higher level. We will do this by showing that the 
maximal span of BSG sets is   d   ∗   and then by showing that  Ξ( d   ∗ )  obtains the maximal 
joint value. Let

   d ˆ   ≡ sup  {span (W (c) )  ∣  =   {W (c′ ) }  
c′∈C

   is a BSG collection and c ∈ C}  .

We will compare   d ˆ    to   d   ∗  . The next lemma is the key step, where externally enforced 
contingent transfers are used to limit the range of  y  to a single set of continuation 
values.

LEMMA 5: For every BSG collection   =  {W(c′ )} c′∈C    and for every  c ∈ C , there 
exists  γ′ ∈ Γ  such that  W(c) ⊂ Z (γ′,  d ˆ   ) + πL( ) .

PROOF OF LEMMA 5:
Take as given a BSG collection    and a contract  c ∈ C , and 

let  (A, X, λ, u, P) = g(c) . Because   d ˆ   ≥ span(W(c | x)) , every point in  W(c | x)  has 
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joint value  L( )  for all  x ∈ X , and  c | ⋅  is  P -measurable, we can find a  P -measurable 
function  b : X →  ℝ  0  2   such that

(A10)  co W (c | x)  ⊂  ℝ  0  2  ( d ˆ  )  +   1 − δ _ δ   b (x)  + πL ( )  

for every  x ∈ X . Let  γ′ ≡ (A, X, λ, u +  b 
–
 , P) . Because stage game  γ′  merely adds  

P -measurable transfers to stage game  γ , we know that   γ ′   ∈ Γ  by the assumption of 
externally enforced contingent transfers.

Consider any  w ∈ W(c) . From the BSG condition, there exists a  c -supported con-
tinuation value    w _    such that  w =   w _   + π(L( ) −    w _   1   −    w _   2  ) . From the definition 
of  c -supported, there exists  α ∈ Δ A  and  y : X →  ℝ   2   such that  y(x) ∈ co W(c | x)  
for all  x ∈ X ,  α   is enforced relative to  g(c)  and   y , and    w _   = (1 − δ )u(α) +  
δ  y – (α) . Following steps in the proof of Lemma  3, we define  y′ : X →  ℝ   2   by 
equation  (A4) and observe that, from this and expression  (A10),  y′   is a function 
from  X  to   ℝ  0  2 (  d ˆ   ) . Substituting for  y′ , we see that induced game (A5) is equivalent 
to induced game    ⟨  A, (1 − δ )u( ⋅ ) + δ  y – ( ⋅ ) ⟩     up to the constant  π δ L( )  in the pay-
off function, which establishes that  α  is enforced relative to  γ′  and   y′ , and there-
fore  ω(α, γ′, y′ ) ∈ Z (γ′,  d ˆ   ) .

We conclude by comparing  w  and  ω(α, γ′, y′ ) . From  w =   w _   + π(L( ) −  
   w _   1   −    w _   2  ) , substituting for    w _    and using the fact that    y –  1  (α) +   y –  2  (α) = L( ) , a 
little algebra yields

  w =  (1 − δ)  ( π 2    u 1   (α)  −  π 1    u 2   (α) )  (1, − 1)  +  (1 − δ) πL ( )  + δ  y –  (α)  .

Substituting for   y –   using the expectation of equation  (A4),    b 
–
  1  (α) +   b 

–
  2  (α) = 0 , 

and   π 1   +  π 2   = 1 , we rearrange terms to get

  w =  (1 − δ)  ( π 2   ( u 1   (α)  +   b 
–
  1   (α) )  −  π 1   ( u 2   (α)  +   b 

–
  2   (α) ) )  (1, − 1)  

 + δ  y – ′(α) + πL( ) ,

which is  ω(α, γ′, y′ ) + πL( ) . We have thus established that  w ∈ Z (γ′,  d ˆ   ) + 
πL( ) . ∎

LEMMA 6:   d ˆ   =  d   ∗  .

PROOF OF LEMMA 6:
Consider any BSG collection   =  {W(c′ )} c′∈C    and any contract  c ∈ C . From 

Lemma 5, there exists  γ′ ∈ Γ  such that  W(c) ⊂ Z (γ′,  d ˆ   ) + πL( ) , which implies 
that  span(W(c)) ≤ span(Z (γ′,  d ˆ   )) . We also know that  span(Z (γ′,  d ˆ   )) ≤ Λ( d ˆ   )  
because  Λ  optimizes over the stage game in addition to the enforced action profile. 
Therefore we have  span(W(c)) ≤ Λ( d ˆ   ) . Because this weak inequality holds for 
every external contract and every BSG collection, it also holds at the supremum 
value, so   d ˆ   ≤ Λ( d ˆ   ) . Because  Λ  is increasing, satisfies  Λ(d ) < d  for all  d >  d 

–
  , 

and its restriction to subdomain  [0,  d 
–
  ]  maps to the same set, it must have a fixed 
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point that weakly exceeds   d ˆ   , implying that   d ˆ   ≤  d   ∗  . From Lemma  4, a BSG  
collection exists in which the span   d   ∗   is attained, so   d ˆ   =  d   ∗  . ∎

LEMMA 7: Every BSG collection    has the property that  L( ) ≤ Ξ( d   ∗ ) .

PROOF OF LEMMA 7:
Suppose to the contrary there is a BSG collection    such that  L( ) > Ξ( d   ∗ ) . 

Then there must exist a contract  c ∈ C  and a value  w  that is  c -supported relative  
to   , such that   w 1   +  w 2   = L( ) > Ξ( d   ∗ ) . From Lemma  6, we have   d   ∗   
≥ sup {span(W(c′ )) ∣ c′ ∈ C } . Applying Lemma  3 with  d =  d   ∗   and  L = L( )  
then yields   w 1   +  w 2   ≤ (1 − δ)Ξ(d ) + δ L( ) < L( ) , a contradiction. ∎

To complete the proof of Theorem 1, simply combine Lemmas 4 and 7. Lemma 7 
implies that the level of the BSG collection    identified by Lemma 4 is maximal 
among the set of BSG collections, and therefore    is a CEV collection. The maximal 
CEV collection contains all of the continuation values in   , so the  semi-stationary 
contract   c   ∗   identified by Lemma 4 is optimal. ∎

Appendix B. Foundations and Technical Notes

This section begins with a description of contractual equilibrium in terms of strat-
egies in a hybrid game in which  stage-game actions are modeled noncooperatively 
and interaction in the negotiation phase is modeled cooperatively. In Section B2 
we discuss technical issues regarding existence and properties of equilibrium, and 
in Section B3 we comment on the connection between the hybrid model and fully 
noncooperative models.

B1. Contractual Equilibrium in Terms of Strategies

Our hybrid model requires a generalized notion of strategy, called a regime, 
specifying both individual actions in the action phase and joint decisions in the 
negotiation phase, conditional on the public history. We develop conditions for a 
contractual equilibrium regime that correspond exactly to the conditions for a CEV 
collection in Section I. Variations and related results are provided in online Appendix  
Section C.2.

Recall that play in a single period  t  consists of the negotiated external contract   c   t   
and transfer    m   t   (equal to    c ˆ     t   and zero in disagreement), the action profile    a   t  , the 
outcome   x   t  , and the unverifiable random draw of the randomization device, which 
we denote    ϕ   t  . Let  ψ =  ( c   t   m   t   x   t   ϕ   t  )  t=1  T    denote the public history of interaction 
through any given period   T . The history to the action phase of a given period   t  
can be expressed as  ψcm , where  ψ   is the history to the end of period   t − 1  (the 
null history if  t = 1 ) and  c  and   m  are jointly chosen in the negotiation phase of 
period  t . Likewise, for a  T -period history  ψ  we write  ψcmxϕ  as the  T + 1 -period 
history that appends  ψ  with joint decision  c  and  m , outcome  x , and random draw  ϕ  
in period  T + 1 . Define  κ(ψ)  to be the external contract inherited in the period fol-
lowing history  ψ . That is, for  ψ = ψ′cmxϕ , we have  κ(ψ′cmxϕ) ≡ c | x , and if  ψ  is 
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the null history then  κ(ψ) =  c   0  . Note that in the period following history  ψ , dis-
agreement is represented by selection of  c = κ(ψ)  and  m = 0 .35

The joint selection of   c   t   and   m   t   is given by functions   r   c   and   r   m   of the public his-
tory  ψ . The mixed action profile is specified by a function   r   a   of the history to the 
action phase  ψcm . Thus a regime is given by  r = ( r   c ,  r   m ,  r   a  ) .

For any contract  c , let us write  (A(c), X(c), λ( ⋅ ; c), u( ⋅ ; c), P( ⋅ ; c)) = g(c)  so 
that we can refer to elements of the stage game in reference to  c . Given a  T -period 
history  ψ , let  v(ψ; r)  denote the continuation value following  ψ , conditional on the 
players behaving according to  r  from this point. That is,  v(ψ; r)  is the expected 
value of   ∑ t=T+1  ∞     δ   t−T−1 (1 − δ )( m   t  + u( a   t ;  c   t  )) , with the expectation taken over the 
infinite history that begins with  ψ . Let   v   a (ψcm, α; r)  denote the continuation value 
from the action phase of a period following history  ψcm , conditional on action pro-
file  α  played in the current period and the players behaving according to  r  from the 
next period. From these definitions we have

   v   a  (ψcm, α; r)  =  (1 − δ) u (α; c)  + δ E x,ϕ   [v (ψcmxϕ; r)  ∣ x ∼ λ (α; c) , ϕ ∼ U [0, 1] ]  .

Further, define    v _  (ψ; r) =  v   a (ψκ(ψ)0,  r   a (ψκ(ψ)0); r)  as the disagreement point for 
negotiation in the period following  ψ .

For any  T -period public history  ψ , let  r | ψ  denote the continuation regime fol-
lowing  ψ ; this is a function of the histories from period  T + 1 . Finally, let us call a 
public history  ψ  negotiation-consistent with regime  r  if for each period in this his-
tory, play in the negotiation phase was either as prescribed by   r   c   and   r   m   or it was the 
disagreement outcome. That is, for any  subhistory  ψ′cm  (a truncation of  ψ ), it must 
be that either  c =  r   c (ψ′ )  and  m =  r   m (ψ′ ) , or  c = κ(ψ′ )  and  m = 0 . Note that  ψ  
may entail deviations from   r   a   in the action phase. Call a history  ψcm  to the action 
phase  negotiation-consistent if it has the same property.

The conditions described next will be applied to only the subset of histo-
ries that are  negotiation-consistent with the regime being evaluated. The rea-
son is technical and relates to existence of equilibrium, which we discuss in 
Section  B2.36 Call a regime  r  incentive compatible in the action phase if for 
every history  ψcm  that is  negotiation-consistent with  r , neither player would gain 
by unilaterally deviating from   r   a   in the action phase that follows. That is, for 
each player   i  and any action   a  i  ′   ∈  A i  (c) , it is the case that   v  i  a (ψcm,  r   a (ψcm); r)  
≥  v  i  a (ψcm, ( a  i  ′  ,  r  −i  a   (ψcm)); r) .

Because the hybrid model accounts for behavior in the negotiation phase coop-
eratively, the equilibrium conditions for this phase are expressed in terms of a 
bargaining solution, namely the generalized Nash solution with fixed bargaining 
weights  π = ( π 1  ,  π 2  ) . We assume that the players negotiate over both the external 
contract and the  self-enforced arrangements. Internal consistency captures the idea 

35 It does not matter for our analysis that our accounting of histories does not differentiate between disagreement 
and an agreement to keep the inherited external contract and make no transfer. 

36 One could use a stronger notion of equilibrium that requires  incentive-compatibility and internal 
 bargain-consistency after all histories, not just those that are  negotiation-consistent; this would correspond to a 
stronger version of CEV that requires  W(c) ≠ ∅  for all  c . Existence would not be assured for as many contractual 
settings, and the modified CEV conditions would be less convenient to apply, but otherwise the difference is incon-
sequential for applications.
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that the players may consider altering their regime to select any contractual arrange-
ment for the current period that, from the start of the next period, reverts back to 
specifications of their current regime (continuing as though the history were some 
other that is  negotiation-consistent with this regime).

To be precise, for a given regime  r  and after any history  ψ , the players contem-
plate choosing any contract  c , transfer  m , and action profile  α ∈ ΔA(c) , and then 
continuing from the next period as though in some other regime  r′ . Call  (c, m, α, r′ )  
comparable with  r  following  ψ  if two conditions hold. First,   v  i  a (ψcm, α; r′ )  
≥  v  i  a (ψcm, ( a  i  ′  ,  α −i  ); r′ )  for   a  i  ′   ∈  A i  (c)  and  i = 1, 2 , so behavior in the current 
period is  incentive-compatible. Second, for every  x ∈ X(c)  and  ϕ ∈ [0, 1] , there 
is a history  ψ′  that is  negotiation-consistent with  r  such that  κ(ψ′ ) = c | x  and  
 r ′ | ψcmxϕ = r | ψ′ . That is, in regime  r′  after history  ψcmxϕ , the parties behave as if 
they were in regime  r  after history  ψ′ .

The bargaining solution requires that  r  solves the problem of maximiz-
ing the joint value over all such comparable arrangements, the bargaining sur-
plus is defined relative to the disagreement point, and the surplus is divided 
according to the bargaining weights. That is, letting  ℓ  denote the maximum 
of   v  1  a (ψcm, α; r) +  v  2  a (ψcm, α; r)  over all  (c, m, α, r′ )  that are comparable with  r  
following  ψ , we require  v(ψ; r) =   v _  (ψ; r) + π(ℓ −    v _   1  (ψ; r) −    v _   2  (ψ; r)) . Call 
regime  r  internally  bargain-consistent if this condition holds for every  ψ  that is 
 negotiation-consistent with  r . Clearly  ℓ  is independent of  ψ , so every internally 
 bargain-consistent regime has a single value of  ℓ  which we call the regime’s level.

A regime is called a contractual equilibrium (CE) if it is incentive compatible in 
the action phase and internally  bargain-consistent, and its level is maximal among 
the set of regimes with these properties. To relate the CE definition in terms of strat-
egies to the recursive formulation of CEV collections, let us define for any regime  r  
a collection   (r) =  {V(c; r)} c∈C    by  V( c ˆ  ; r) ≡ {v(ψ; r) ∣ ψ is  negotiation-consistent 
with r and κ(ψ) =  c ˆ   }  for every   c ˆ   ∈ C . Online Appendix Section C.1 establishes 
the following result.

LEMMA 8: If  r  is a contractual equilibrium then   (r)  is a CEV collection. If    
is a CEV collection then there exists a contractual equilibrium regime  r  satisfying  
V(c; r) ⊂ W(c)  for every  c ∈ C .

B2. Technical Issues Regarding Existence

Two technical issues have arisen in our analysis:  W(c) = ∅  is possible for 
some  c  in a CEV collection, and it is difficult to find primitive conditions that guar-
antee existence. We elaborate with two examples.

Consider first a  principal-agent setting in which the agent (player 1) must choose 
effort   a 1   ≥ 0  at increasing cost, effort is verifiable, and contingent transfers are 
externally enforced. Consider a contract that, for some threshold     a _   1   > 0 , specifies 
a bonus if   a 1   >    a _   1    and no bonus otherwise. For a large enough bonus, this con-
tract puts the agent in the position of having no best response in the effort subgame. 
This issue arises naturally in many standard contracting and  mechanism-design 
 models, where the typical remedy is to disregard such contracts/mechanisms. In our 
study, such a problematic contract  c  has  W(c) = ∅  and correspondingly we do not 
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include  c  in the  incentive-compatibility check (also  c  would not arise as an inherited 
contract in  negotiation-consistent histories of the hybrid model).

We can rule out examples like the one just described by limiting attention to 
finite stage games, but existence issues remain. The second example features a class 
of stage games with externally enforced contingent transfers  τ  and  τ′ , given by the 
following payoff matrix:

Left Right Out

Up  0 + τ′,  1 − τ′  1 + τ,  0 − τ  0 + τ′,  0 − τ′ 
Down  2 + τ′,  0 − τ′  0 + τ′,  1 − τ′  0 + τ′,  0 − τ′ 
Out  0 + τ′,  0 − τ′  0 + τ′,  0 − τ′  0 + τ′,  0 − τ′ 

The partition  P  is as illustrated by the cell boundaries: the enforcer can verify 
whether (Up, Right) is played but cannot distinguish among any of the other action 
profiles. Thus, a different transfer  τ  can be enforced for   (Up, Right)  , but all other 
action profiles share the same transfer  τ′ .

Suppose for the moment that  δ = 0 . The profile (Down, Left) gives the highest 
joint value but is not a Nash equilibrium for any  τ  and  τ′ . For  τ − τ′ > − 1  there 
is a  mixed-strategy equilibrium in which the players choose Out with probability  0 ,  
player 1 chooses Up with probability  1/(2 + τ − τ′ ) , and player 2 chooses Left 
with probability  (1 + τ − τ′ )/(3 + τ − τ′) . In this equilibrium, (Down, Left) is 
played with a probability that is increasing in  τ − τ′ . There is no maximum equilib-
rium joint value by choice of  τ, τ′ ∈ ℝ  and therefore we cannot guarantee existence 
without restricting the class of stage games, such as bounding transfers. The prob-
lem extends to the setting with  δ > 0 .

Overall, bounding transfers may help secure equilibrium existence but, for stage 
games like the one above, bounds interfere with our main result. This is due to a 
 trade-off between using constant transfers to provide incentives in previous peri-
ods and using differential transfers to provide incentives in the current period. For 
example, suppose  τ  and  τ′  must be in  [− 4, 4]  and assume  δ  is strictly positive but 
small enough so that cooperation still requires a mixed action profile. The players, 
in agreement, want an external contract that specifies  τ = 4  and  τ′ = − 4  in the 
current period, for this gives the best incentives for the stage game. They would also 
like to pick a continuation external contract from the next period with a continuation 
value that favors player 1 in the event of (Up, Right) and favors player 2 otherwise. 
But to do this, the players would want  τ′  in the next period to be larger than  − 4  
following (Up, Right) in the current period. This would generally not maximize the 
span from the next period, however, and the  current-period transfer constraints do 
not allow an adjustment to utilize the  maximal-span continuation contract.

B3. Noncooperative Foundations

Our hybrid cooperative/ noncooperative model is tightly connected to a fully 
noncooperative account of the contractual setting in which the negotiation phase 
is described as a bargaining protocol, such as  random-proposer  ultimatum-offer. 
Watson (2013) and Miller and Watson (2013) develop a refinement of perfect public 
equilibrium based on axioms that relate statements and voluntary transfers in the 
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bargaining phase to a selection of continuation play from the action phase in the cur-
rent period.37 The refinement, called contractual equilibrium in the fully noncoop-
erative game, is equivalent to the recursive formulation of  contractual-equilibrium 
continuation values.

The Miller and Watson (2013) analysis extends with minimal modification to our 
setting with external enforcement. An offer includes (i) a contract  c , (ii) an imme-
diate transfer, and (iii) a specification of future behavior summarized by continu-
ation values. Acceptance of an offer causes  c  to be externally enforced and causes 
the immediate transfer to be automatically enforced as well (not necessarily by the 
same authority that enforces  c ). Axioms relate the third part of the offer to the coor-
dinated play in the continuation of the game.38 External enforcement adds one new 
technicality, related to the existence issue described in Section B1: it is feasible for 
the players to enter the action phase of a period with a contract  c  (by default or by 
agreement) for which there is no equilibrium action profile. To deal with this prob-
lem in general, one can ignore the equilibrium conditions for such contingencies 
or limit  Γ  to finite stage games (where the problem would not arise). A failure of 
 joint-value maximization, as in the second example described in B2, would lead to 
nonexistence, just as in the hybrid model.
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