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Optimal convex contracts

In this supplemental appendix we consider contracts that are symmetric with
respect to task names and for which the amount of monitoring to be accomplished
(denoted F ) is public. In this case, the sanction depends on the number of
failures f of inspection, where f ∈ {0, 1, . . . , F}. Within this class, contracts
which deliver increasingly large sanctions for larger numbers of inspection failures
may be a focal class to consider. Such decreasing convex (DC) contracts satisfy the
restriction v(f)−v(f+1) ≥ v(f−1)−v(f) ≥ 0. Convex contracts may be natural
in settings where sanctions are imposed by third parties who are more inclined
to exact sanctions if they perceive a consistent pattern of failures. Conversely, a
non-convex contract may be particularly difficult to enforce via an affected third
party, since it would require leniency on the margin for relatively large injuries.
For arbitrary capacity M , we show that DC contracts optimally induce work
target strategies. Furthermore, the optimal such contract forgives failures up to
some threshold, and increases the sanction linearly thereafter.

Theorem 5. For any M , work-target strategies with a kinked linear sanctioning
scheme are optimal in the class of DC contracts.

We first prove several lemmas. The first provides a sufficient condition on a
one-parameter family of probability distributions for the expectation of a concave
function to be concave in the parameter. Though it can be derived as a corollary of
a more general theorem of Susan Athey (2000), we provide a simple statement of
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the condition along with a direct proof. We say that a function ψ : {0, 1, . . . , R} →
R is concave if ψ(r+1)−ψ(r) ≤ ψ(r)−ψ(r−1) for all r = 1, . . . , R−1. A function
φ : Z → R, where Z ⊆ R, is double crossing if there is a (possibly empty) convex
set A ⊂ R such that A ∩ Z =

{
z ∈ Z : φ(z) < 0

}
.

Lemma 5 (Preservation of concavity). Let R = {0, 1, . . . , R}, and let {qz}z∈Z be
a collection of probability distributions on R parameterized by z ∈ Z = {0, 1, . . . , Z}.1
The function Ψ(z) =

∑R
r=0 ψ(r)qz(r) is concave if

1) There exists k, c ∈ R, k 6= 0, such that z = k
∑R

r=0 rqz(r) + c for all z ∈ Z;

2) qz+1(r) − 2qz(r) + qz−1(r) for all z = 1, . . . , Z − 1, as a function of r, is
double crossing;

3) ψ : {0, 1, . . . , R} → R is concave.

Proof. Since z = k
∑R

r=0 rqz(r) + c, there exists b̂ ∈ R such that
∑R

r=0(mr +

b)qz(r) = m
k z + b̂+ c for any real m and b. Hence, for any m and b,

R∑
r=0

(mr + b)
(
qz+1(r)− 2qz(r) + qz−1(r)

)
=
m

k

(
z + 1− 2z + z − 1

)
= 0,(B1)

for all z = 1, . . . , Z− 1. Therefore, for any m and b, the second difference of Ψ(z)
is

Ψ(z + 1)− 2Ψ(z) + Ψ(z − 1) =

R∑
r=0

ψ(r)
(
qz+1(r)− 2qz(r) + qz−1(r)

)
=

R∑
r=0

(
ψ(r)−mr − b

)(
qz+1(r)− 2qz(r) + qz−1(r)

)
.

(B2)

By assumption, qz+1(r)−2qz(r)+qz−1(r), as a function of r, is double crossing.
Furthermore, since ψ is concave, we can choose m and b such that, wherever(
qz+1(r)− 2qz(r) + qz−1(r)

)
or ∂2

∂z2
qz(r) is nonzero, ψ(r)−mr − b either has the

opposite sign or is zero. From Eq. B2 we may conclude Ψ(z) is concave.

The next lemma says that the expected sanctioning scheme will be decreasing
convex in the number of tasks completed.2

Lemma 6. If v is decreasing convex, then hv ≡
∑F

f=0 v(f)g(f, ·) is decreasing
convex.

1 A similar result holds if z ∈ Z = [0, 1].

2 Recall that g(f, a) ≡
∑Fi

k=f

(
pi−a

k

)(
a

Fi−k

)
(
pi
Fi

) (k
f

)
γf (1− γ)k−f .
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Proof. By letting a ≡ |A|, reversing the order of summation, and using fact that(
k
f

)
= 0 when k < f , we can write hv(A) as follows:

hv(A) =
F∑
f=0

g(f, a)v(f)

=

F∑
f=0

( F∑
k=0

(
p−a
k

)(
a

F−k
)(

p
F

) (
k

f

)
γf (1− γ)k−f

)
v(f)

=
F∑
k=0

(
p−a
k

)(
a

F−k
)(

p
F

) ( F∑
f=0

(
k

f

)
γf (1− γ)k−fv(f)

)
.

(B3)

Therefore, the expectation is first with respect to the binomial, and then with
respect to the hypergeometric. Applying Lemma 5 twice gives the result. First,
note that the expectation of the binomial is γk, a linear function of k, while the
expectation of the hypergeometric is F

p (p − a), a linear function of a. Hence it
suffices to show that the binomial second-difference in k is double-crossing in f
(hence the inside expectation is decreasing convex in k) and the hypergeometric
second-difference in a is double-crossing in k. To see this is true for the binomial,
note that we may write the binomial second-difference in k as(

k

f

)
γf (1− γ)k−f

(
(k + 1)(1− γ)

k + 1− f
− 2 +

k − f
k(1− γ)

)
.(B4)

It can be shown that the term in parentheses is strictly convex in f and therefore
double crossing in f , so the whole expression is double-crossing in f . To see
this is true for the hypergeometric, note that we may write the hypergeometric
second-difference in a as(

p−a
k

)(
a

F−k
)(

p
F

) (
p−a−k
p−a ·

a+ 1

a+ 1− F + k
− 2 +

p− a+ 1

p− a+ 1− k
· a− F + k

a

)
.(B5)

It can be shown that the term in parentheses has either zero or two real roots.3

If there are no real roots, then the term in parentheses is double-crossing in k
(the region in which it is negative must be convex, but may be empty), and thus
the whole expression is double-crossing in k. If there are two real roots, it can be
shown that the derivative with respect to k is negative at the smaller root, and
thus both the term in parentheses and the whole expression are double-crossing
in k.

3 The term in parentheses does not account for the fact that the entire expression equals zero whenever
k > p−a or F −k > a. However, on the closure of these regions the second difference cannot be negative,
and so these regions may be ignored.
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Proof of Theorem 5. Fix any p, F , and λ. Suppose strategy s, with p∗ > 0
the maximal number of tasks completed, is optimal. Consider the decreasing
convex contract v that implements s at minimum cost. Because v is decreasing,
MLRP (or FOSD in a) implies the expected sanction decreases in the number
of completed tasks: h(a) > h(a − 1) for all a. By contradiction, suppose the
downward constraint for p∗ versus p∗ − 1 is slack: h(p∗)− h(p∗ − 1) > c− b. By
Lemma 6 and monotonicity, for any k > 1, h(p∗ − k + 1) − h(p∗ − k) > c − b.
But then for any a with s(a) = a and every a′ < a, the downward constraint
h(a)− h(a′) =

∑a−1
k=a′ h(k + 1)− h(k) ≥ (a− a′)(c− b) is slack. Some constraint

must bind at the optimum, else the strategy is implementable for free, so the
downward constraint for p∗ versus p∗ − 1 must bind. Again, each downward
constraint is satisfied, and for any a > p∗, h(a)− h(p∗) < (a− p∗)(c− b). So the
strategy s has a work target of p∗.

Suppose we look for the optimal convex contract with p assigned tasks, F mon-
itoring slots, and strategy s with work target p∗. By the above, the only binding
incentive constraint is the downward constraint for completing p∗ tasks. Since
v(0) = 0, convexity implies monotonicity. The constraint v(0) ≥ 0 does not
bind,4 so the cost minimization problem in primal form is

max
(−v)≥~0

F∑
f=0

(
−(−v(f))

p∑
a=0

−g(f, a)ts(a)
)

subject to

F∑
f=0

(−v(f))
(
g(f, p∗)− g(f, p∗ − 1)

)
≤ −(c− b),

2(−v(f))− (−v(f + 1))− (−v(f − 1)) ≤ 0 for all f = 1, . . . , F − 1,

(B6)

where ts(a) =
∑p

a′=a I
(
s(a′) = a

)(
p
a′

)
λa
′
(1−λ)p−a

′
is the probability of completing

a tasks given strategy s. Let x be the Lagrange multiplier for the incentive
compatibility constraint, zf the multiplier for the convexity constraint 2(−v(f))−
(−v(f + 1)) − (−v(f − 1)) ≤ 0, and ~z the vector (z1, . . . , zF−1). The constraint
set can be written A> · (−v(0), . . . ,−v(F )), where, in sparse form,

A =



g(0, p∗)− g(0, p∗ − 1) −1
... 2

. . .
... −1

. . . −1
...

. . . 2
g(F, p∗)− g(F, p∗ − 1) −1

 .(B7)

4 Although v(0) ≥ 0 is satisfied with equality, the binding constraint on v(0) is actually v(0) ≤ 0.
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Let r be the vector of dual variables: r = (x, z1, . . . , zF−1). The dual problem is

min
r≥~0

(b− c)x s.t. (Ar)f ≥ −
p∑
a=0

g(f, a)ts(a) for all f = 0, 1, . . . , F ,(B8)

where (Ar)f is the (f)th component of A · r; i.e.,

(Ar)f = x
(
g(f, p∗)− g(f, p∗ − 1)

)
− zf−1 + 2zf − zf+1,(B9)

where we define z0 ≡ 0, zF ≡ 0, and zF+1 ≡ 0. Let f̂ be the smallest f with

v(f) < 0. It must be that v(f) < 0 for all f ≥ f̂ , so by duality, (A · r)f ≥
−
∑p

a=0 g(f, a)ts(a) binds for all f ≥ f̂ . Hence

x =

∑p
a=0 g(f, a)ts(a)− zf−1 + 2zf − zf+1

g(f, p∗ − 1)− g(f, p∗)
for all f = f̂ , . . . , F .(B10)

In particular, this means that if zF−1 = 0 (implied for f̂ = F ) then the optimal
contract (which would have expected sanction −x(c − b)) has the same value as
that derived in ??, completing the claim. Henceforth we assume zF−1 > 0. The
sum of the z-terms over (A · r)−1 and (A · r)F is −zF−1 + (2zF−1 − zF−2) =
zF−1− zF−2. Note also the corresponding sum of z-terms over F − 2, F − 1, and
F : −zF−1 + (2zF−1− zF−2) + (−zF−3 + 2zF−2− zF−1) = zF−2− zF−3. Iterating,

the sum of the z-terms in (A ·r)f from any f̃ ≥ f̂ to F is zf̃ −zf̃−1. Summing the

equalities in Eq. B10 thus yields a recursive system for zf̃ for all f̃ = f̂ , . . . , F :

zf̃ = zf̃−1 −
F∑
f=f̃

p∑
a=0

g(f, a)ts(a) + x
F∑
f=f̃

(
g(f, p∗ − 1)− g(f, p∗)

)
.(B11)

By definition, the convexity constraint is slack at f̂−1, so zf̂−1 = 0. By induction,

for f ′ = f̂ , . . . , F ,

(B12) zf ′ = −
f ′∑
f̃=f̂

F∑
f=f̃

p∑
a=0

g(f, a)ts(a) + x

f ′∑
f̃=f̂

F∑
f=f̃

(
g(f, p∗ − 1) − g(f, p∗)

)
.

Plugging Eq. B12 for f ′ = F into the binding constraint (Ar)F ≥ −
∑p

a=0 g(F, a)ts(a)
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yields:

x =

∑F
f̃=f̂

∑F
f=f̃

∑p
a=0 g(f, a)ts(a)∑F

f̃=f̂

∑F
f=f̃

(
g(f, p∗ − 1)− g(f, p∗)

) .(B13)

The expectation of a random variable X on {0, . . . , n}, is
∑n

j=1 j Pr(X = j),

which also equals
∑n

j=1 Pr(X ≥ j). Since
∑F

f=f̃

∑p
a=0 g(f, a)ts(a) = Pr(f ≥ f̃),

the numerator of Eq. B13 equals

(B14)
F∑
f̃=f̂

F∑
f=f̃

p∑
a=0

g(f, a)ts(a) =
F∑
f̃=f̂

Pr(f ≥ f̃) =
F∑
f̃=f̂

(f̃ − f̂ + 1) Pr(f = f̃)

=
F∑
f̃=1

(f̃ − f̂ + 1)+ Pr(f = f̃) = E
(
(f − f̂ + 1)+

)
≡ E

(
φ(f̂)

)
,

where (y)+ ≡ max{y, 0} and φ is the random function φ(f̂) ≡ (f − f̂ + 1)+. In

words, φ(f̂) is the number of discovered unfulfilled tasks that exceed the threshold

for sanctions f̂ . The denominator of Eq. B13 can be rewritten similarly, yielding

x =
E
(
φ(f̂)

)
E
(
φ(f̂)

∣∣ a = p∗ − 1
)
− E

(
φ(f̂)

∣∣ a = p∗
) .(B15)

The minimized expected sanction is E
(
v(f)

)
= (b− c)x, and is implemented by

v(f) = − (c− b)(f − f̂ + 1)+

E
(
φ(f̂)

∣∣ a = p∗ − 1
)
− E

(
φ(f̂)

∣∣ a = p∗
) for all f = 0, 1, . . . , F .

*

REFERENCES

Athey, Susan. 2000. “Characterizing properties of stochastic objective func-
tions.” Working paper.


