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Abstract

e game-theoretic literature on collusion has been hard pressed to explain why a cartel
should engage in price wars, without resorting to either impatience, symmetry restrictions,
inability to communicate, or failure to optimize. is paper introduces a new explanation that
relies on none of these assumptions: if the cartel’s member rms have private information
about their costs, price wars can be optimal in the face of complexity. Speci cally, equilib-
ria that are robust to payoff-irrelevant disruptions of the information environment generically
cannot attain or approximate efficiency. An optimal robust equilibrium must allocate market
shares inefficiently, and may call for price wars under certain conditions. For a two- rm car-
tel, cost interdependence is a sufficient condition for price wars to arise in an optimal robust
equilibrium. at optimal equilibria are inefficient generically applies not only to collusion
games, but also to the entire separable payoff environment (Chung and Ely )—a class that
includes most typical economic models.
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 Introduction

Firms collude to increase their aggregate pro ts at the expense of consumers. But collusion is
challenging to sustain because each rm has an individual incentive to cheat on the arrangement.
Longstanding intuition in industrial organization holds that a “price war”—a period of inefficiently
low prices—erupts when collusive efforts falter.¹ However, the game theory literature has found
difficulty modeling price wars among patient rms. is paper shows that price wars are a rational
cartel response to complexity in the environment, even if the cartel is very patient. Speci cally,
this paper studies collusion under private information, focusing on equilibria that are robust to
payoff-irrelevant disruptions of the information environment. In such equilibria, both inefficient
allocation and price wars can be optimal even in the limit as the rms become perfectly patient,
due to the burden of providing robust incentives to share their information truthfully.

Models based on full-information repeated games suggest that collusion need never break
down on the equilibrium path, and therefore an effective, patient cartel should exhibit neither
price wars nor allocative inefficiency. To answer this challenge, Green and Porter () intro-
duce monitoring imperfections. ey show that price wars arise after bad outcomes, in the cartel’s
optimal “strongly symmetric” equilibrium. (In strongly symmetric strategies, the rms play only
symmetric stage game action pro les.) e prospect of a price war deters any unobservable de-
viation, such as secret price cutting or overproduction, that would increase the probability of bad
outcomes. Since bad outcomes arise with positive probability even when none of the rms de-
viates, price wars arise on the equilibrium path, preventing the cartel from attaining monopoly
pro ts.

However, the price wars in the Green and Porter () model are alleviated if the cartel can
play asymmetric equilibria, as shown by Fudenberg, Levine, and Maskin (). Indeed, the folk
theorem applies, so monopoly pro ts are attainable in the limit as the rms become more patient.²
Athey and Bagwell (, ) model collusion with private information, such as information
about production costs. Not only does the folk theorem apply in the limit,³ but also even impatient
rms prefer to mis-allocate market shares, rather than engage in price wars. Intuitively, if one rm

needs to be punished, another rm can absorb its market share rather than initiating a price war.
Broadly speaking, the literature suggests that monopoly pro ts arise in the limit, and, furthermore,
under private information price wars are not optimal even if the cartel is impatient.

¹ e empirical and historical literatures have identi ed many instances of oligopolistic pricing patterns that appear
to involve price wars. See, for example, Porter () on the U.S. railroad industry in –, Levenstein () on
the bromine industry in –, Bresnahan () on the U.S. auto industry in –, Slade () on the
Vancouver gasoline market in , Busse () on the airline industry in –, and Fabra and Toro () on
the Spanish electricity market in .

²Harrington and Skrzypacz () prove similar results in a model with a different monitoring structure.
³Applied to games with private information, the Fudenberg, Levine, and Maskin () folk theorem requires

statistically independent costs and private values across rms. Aoyagi () and Miller () provide conditions
under which the folk theorem generalizes to collusion with correlated signals and interdependent values.





is paper shows that monopoly pro ts are not attainable under private information, even
in the limit, among equilibria that are robust to payoff-irrelevant disruptions of the information
environment. Inefficient allocation is pervasive in such equilibria. In addition, price wars arise,
and persist in the limit, in cartels with interdependent costs (such as when private signals about
costs re ect both common and idiosyncratic underlying shocks). is is the rst game-theoretic
explanation for price wars that does not rely on either impatience, a symmetry restriction, inability
to communicate, or a failure to optimize.⁴

e robustness criterion I impose is ex post incentive compatibility (EPIC) in each period,
taking expectations over the future path of play. is criterion was independently introduced by
Athey and Miller () and Bergemann and Välimäki (, who call it “periodic EPIC”). EPIC
is necessary and sufficient for an equilibrium to be robust to the introduction of arbitrary payoff-
irrelevant signals, which do not enter the rms’ ex post pro t functions but may be correlated with
the contemporaneous payoff-relevant information. In practice, EPIC gives each rm the incentive
to share its information without rst trying to infer what its collaborators may have learned. For
instance, there is no need for them to communicate through a disinterested mediator; they can
speak face-to-face and in any order. Similarly, it does not matter whether they spy on each other,
communicate privately as well as publicly, or inadvertently learn new payoff-irrelevant information
along the way.

More generally, the inefficiency does not arise from features special to collusionmodels. I show
that aggregate utility under EPIC is bounded away from efficiency across a great array of repeated
games with private information. Speci cally, aggregate payoffs are bounded by the value of imple-
menting a one-shot outcome rule under EPIC and a no-subsidy condition, and this bound is tight
under generous conditions. For the separable payoff environment that contains many important

⁴eoretically, Sannikov and Skrzypacz () generate price wars that worsen as the frequency of adjustment
increases, in a model in which information arrives continuously. But for any xed frequency of adjustment, price wars
disappear as rms become more patient. Following Rotemberg and Saloner (), there is a substantial literature
on price wars in a full-information environment with exogenous public demand shocks, where the effect is driven by
the individual rationality constraints, but price wars disappear if the rms are sufficiently patient. Besides Green and
Porter (), other studies invoking symmetry include Abreu, Pearce, and Stacchetti () and Athey, Bagwell, and
Sanchirico (). Blume and Heidhues (), Hörner and Jamison (), Skrzypacz and Hopenhayn () study
collusion with private information but without communication. Various intuitive but suboptimal collusive mechanisms
have also been studied (e.g., Aoyagi , Fershtman and Pakes , Lopomo, Marshall, and Marx ).

Empirically, various studies of collusion in auctions suggest that failure to optimize is rampant. e results in this
paper suggest that failure to optimize, such as by naively allocating efficiently, can lead to even more price wars (see
Example ). Kwoka () describes a real estate cartel that sent a designated bidder to obtain properties at public
auctions, and then used an ascending rst-price “knockout” auction to allocate the property within the cartel. After the
designated bidder was compensated, the remaining revenue from the knockout auction was distributed to the cartel
members. Bidding your value in such an auction is not incentive compatible; instead, cartel members overbid in the
knockout auction, leading the designated bidder to overbid in the public auction. Overbidding in the public auction can
be interpreted as a price war. Similar results have been found in detailed case studies by Pesendorfer () in school
milk procurement auctions and Asker () in collectible stamp auctions. Lopomo, Marshall, and Marx () survey
a range of cases with these characteristics. Outside of repeated auction environments, most studies of collusion and
price wars—such as those cited in footnote —have focused on industries with relatively undifferentiated products. In
such industries, private information is less likely to be a key driver of cartel behavior.





economicmodels, this bound generically rules out efficiency. ese results provide a counterpoint
to the folk theorem: If we ask for robustness, then efficiency is no longer attainable, even in the
limit.

. Robustness properties

A perfect public equilibrium (PPE, studied by most of the sources cited above) is a perfect Bayesian
equilibrium in which rms condition their strategies in each period on only the public history and
their current private information; they ignore their private histories. I de ne an ex post perfect
public equilibrium (EPPPE) as a PPE that satis es EPIC in every period.

Why are the robustness properties of EPPPE desirable? Suppose that in each period rms ob-
serve not only payoff-relevant signals but also payoff-irrelevant signals, and both types of signals
may be statistically interdependent in arbitrary ways. (roughout I assume that signals are inde-
pendent across time periods, however.) In an ordinary PPE, each rm’s incentive constraint for
revealing its information truthfully applies to its interim beliefs, knowing its own signals but not
those of the other rms. Given its own information, it computes its conditional expectations of
other rms’ actions given its beliefs about their beliefs, including its beliefs about their beliefs about
its beliefs, and so on. ese higher order beliefs are in uenced by the payoff-irrelevant signals.⁵
Hence to construct an ordinary PPE, one in principle must know the joint distribution over all
signals, both payoff-relevant and payoff-irrelevant. Since constructing equilibria in the presence
of complex higher order beliefs is a complex problem, the literature usually assumes that payoff-
irrelevant signals are simply absent. However, this assumption is not robust, as Weinstein and
Yildiz () have shown that higher order beliefs can have signi cant equilibrium consequences.

e class of EPPPEs, in contrast, is the class of PPEs that can be constructed without any
knowledge of the distribution over payoff-irrelevant signals (see Bergemann and Morris ).
With respect to EPPPE, games that differ only in their payoff-irrelevant signals are equivalent.
Put another way, a PPE that does not rely on the payoff-irrelevant details of the informational
environment must be an EPPPE.

e robustness properties of EPPPE are relevant to collusive interaction in practice. Firms are
organizations rather than individuals, and they face internal information aggregation and incentive
compatibility issues even in the absence of collusion. A PPE is a fragile equilibrium, which can be
disrupted by the slightest deviation from a strict simultaneous communication protocol. ere-
fore communication between rms must be restricted to the highest levels and subjected to rigid
protocols. e rms must not allow any information to leak out prior to communication, even as
they face incentives to spy on the information of their cartel partners. In a sufficiently complex
information environment, constructing and maintaining an optimal PPE may be prohibitively dif-

⁵More precisely, when we consider the universal type space constructed from the payoff-relevant signals, payoff-
irrelevant signals can generate arbitrary higher order beliefs.





cult. In an EPPPE, on the other hand, each rm can casually share its information in a way that
best suits the circumstances, without worrying about information leakage or communication pro-
tocols. Its employees can converse with their counterparts in other rms—engineers to engineers,
procurement officers to procurement officers—to communicate costs more precisely. e ability
to communicate without structure can dramatically ease their collaboration in jurisdictions with
anti-trust enforcement, since they may not be able to predict when and how they will be able to
exchange information. In short, even if it is feasible to play an optimal PPE, playing an EPPPE
instead reduces the unmodeled burdens of maintaining rigid protocols in the face of complexity.
ese real-world advantages make EPPPE a potentially more appropriate equilibrium concept for
the study of collusion.

. Optimal robust collusion

EPPPEs are robust, but Section  shows that this robustness comes at a cost: cartel pro ts under
EPPPE are generally bounded away from monopoly pro ts, and the bound applies uniformly, re-
gardless of patience. e root problem is that if the rms allocate market shares efficiently, then as
a group they must generally receive different aggregate continuation pro ts after different ex post
realizations of their signals. For instance, under private values the cartel can run a second-price
“knockout” auction (McAfee and McMillan ) to determine which rm serves the market, but
it is then impossible to fully rebate the winner’s payment back to the member rms without dis-
rupting their incentives. So if the rms want to implement efficient allocation, they must burn
money—such as by engaging in price wars—in order to provide the necessary incentives.⁶

In the tradeoff between efficient pricing and efficient allocation, efficient allocation turns out
to be surprisingly expensive. e cartel is always willing to give up at least a little bit of alloca-
tive efficiency to reduce the severity of price wars, as illustrated in Examples – and proven in
eorem . In particular, the cartel can reduce the severity of price wars by ignoring efficiency
when both rms’ costs are very low. en the rms’ incentive payments for truthful revelation are
also constant when their costs are very low. e revenues from constant incentive payments are
easier to rebate back to the rms, allowing them to reduce the severity of their price wars. e gain
from reducing the severity of price wars more than makes up for the loss in allocative efficiency.
Moreover, in a canonical example (Example , featuring uniformly and independently distributed
costs) this intuition scales up to the whole signal space: the cartel prefers to eliminate price wars
entirely, by allocating very inefficiently.

On the other hand, if the rms’ costs are interdependent then eliminating price wars would

⁶e need for price wars could be relaxed if the rms could obtain insurance against imbalances in their transfers.
Since there is no exogenous authority (other than the antitrust authority who would frown on such an arrangement),
there is no presumption that the rms ought to be able to obtain such insurance. If they could indeed accept budget
imbalances (such as by self-insuring), these abilities should be modeled within the game. Athey and Miller  take
such an approach for a bilateral trading relationship.





require such extremes of inefficiency that the rms are alwayswilling to tolerate somepricewars, as
illustrated in Example  and proven ineorem. Costs will be interdependent if each rm’s cost is
in uenced by both an idiosyncratic shock and a common shock. If their costs are interdependent
and the allocation rule is not degenerate, then each rm’s incentive payment must depend on
comparisons between rms. Such payments are difficult to rebate back to the rms, so price wars
are difficult to avoid. In addition, price wars may be optimal for some parameters even when costs
are independent, as shown in Example . Section . explains why these results extend to several
generalizations of the analysis: eliminating transfers, allowing equilibria in private strategies, and
adding monitoring imperfections.

Section  expands the analysis to a general class of repeated games with private information.
When the players are sufficiently patient, the problemof constructing an optimal EPPPE reduces to
the static mechanism design problem of maximizing aggregate utility in the stage game, subject to
a no-subsidy condition. eorem  proves this equivalence formally by extending the techniques
of Abreu, Pearce, and Stacchetti (), Fudenberg, Levine, and Maskin (), and Fudenberg
and Levine () to this setting. erefore efficiency is attainable in an EPPPE if and only if
there exists an efficient solution to the static mechanism design problem of maximizing aggregate
utility subject to EPIC and ex post budget balance. eorem  shows that in the separable payoff
environment (Chung and Ely ), generically there does not exist such a mechanism.

 Collusion with private information

Green and Porter () note that standard full-information models of collusion normally yield
optimal equilibria in which behavior along the equilibrium path is stationary and allocatively effi-
cient, whereas in practice cartels often exhibit intermittent periods in which they offer inefficiently
low prices. Such episodes are called price wars, and can arise in robust equilibria of collusionmod-
els with private information about their costs.

Consider a simple class of in nitely repeated collusion games with private information, gen-
eralizing Athey and Bagwell (). A continuum of identical price-taking consumers collectively
demands one unit at any price less than or equal to , and zero units otherwise. Each rm i ∈
{1, . . . , N} has a cost function ci : Θ → [0, 1]. In each period, the shock θ ∈ Θ ≡ Θ1 × · · · ×ΘN

that governs the rms’ costs is realized, with each rm i observing only its private signal θi. ese
private signals are distributed according to a joint probability distribution ϕ, possibly with correla-
tion across rms, but identically and independently across periods. In each period, after observing
their respective signals, the rms can communicate. After communicating, each rm sets a price
pi ∈ R, and the consumers buy from the rm with the lowest price. If multiple rms post the
lowest price, then they may split the market in any proportions amongst themselves, by mutual
agreement (as in Athey and Bagwell). At the end of the period, the rms can send each other





monetary transfers. e rms share a common discount factor δ < 1. Aside from the friction of
private information and the absence of an external “budget breaker” to provide insurance against
budget imbalances, this environment is quite permissive for the rms, giving them their best shot
at collusion.

Let wi(θ) ≡ 1 − ci(θ) be rm i’s value of selling to the entire market at a price of  when the
shock is θ, and let X =

{
χ ∈ RN

+ :
∑

i χi = 1
}

be the set of possible market share allocations.
Efficient collusion in this environment means that, in each period, whichever rm (or group of
rms, if there is a tie) has the lowest cost should set a price of  and receive a market share of ,

while all other rms receive market shares of  (such as by setting prices greater than ).

. Collusion under perfect public equilibrium

Suppose that ϕ is common knowledge at the start of each period, and θi is the only new infor-
mation that each rm i observes before making its announcement to the others. en average
discounted cartel pro ts under PPE are bounded above by the value of the following mechanism
design problem (as shown by Lemma , in Appendix B):

V max ≡ max
⟨x,y⟩:Θ→X×RN

E
∑
i

[
wi(ϑ)xi(ϑ) + yi(ϑ)

]
subject to

No subsidy:
∑
i

yi(θ) ≤ 0 for all θ,

IIC: θi ∈ argmax
θ̂i∈Θi

E
[
wi(θi, ϑ−i)xi(θ̂i, ϑ−i) + yi(θ̂i, ϑ−i)

∣∣θi] for all θi and all i,

()

where ϑ is the random variable of which θ is a particular realization. By the revelation principle,
it is without loss of generality to restrict attention to direct revelation mechanisms in which the
rms literally report their signals. In the mechanism ⟨x, y⟩, the allocation rule x : Θ → X assigns

each rm a market share as a function of the rms’ reports, while the transfer rule y : Θ → RN

assigns the monetary transfers each rm should receive. e no-subsidy condition embodies the
constraint that the cartel cannot bring in money from outside the game. So following any θ for
which

∑
i yi(θ) < 0, the rms should initiate a price war. e interim incentive compatibility (IIC)

constraint says that each rm imust be willing to report its signal truthfully, given its expectations
conditioned on its own private signal θi.

If the rms are sufficiently patient then there exists a PPE that actually attains V max. Along
the equilibrium path, the cartel simply employs the mechanism that solves Eq.  in every period.
IIC discourages each rm from lying about its signal, and every other available deviation—such
as undercutting the other rms’ prices or reneging on equilibrium transfers—is observable. Fol-
lowing an observable deviation, the rms can switch to a punishment path in which they do not
communicate, and set their prices as if bidding non-cooperatively in a rst-price procurement





auction. Such bidding behavior forms a perfect Bayesian equilibrium in the stage game, and yields
low pro ts. If the rms are sufficiently patient then the threat of incurring punishment suffices to
discourage all observable deviations.

Under appropriate conditions, when the cartel attains V max, it attains the same pro ts that
would be earned by a monopolist who owned all the rms’ production processes. For instance,
the cartel attains monopoly pro ts if the following assumption is satis ed:

Assumption  (Monotonicity and Regularity). ere exists B ∈ (1,∞) such that, for all θ, all
j ̸= i, and all i

(i) wi(θ) is continuously differentiable with 0 ≤ ∂wj(θ)
∂θi

< ∂wi(θ)
∂θi

− 1
B < B − 1

B ;

(ii) wi(0, . . . , 0) = 0;

(iii) ϕ is a continuously differentiable probability density with 1
B < ϕ(θ) < B.

Assumption  is maintained throughout the remainder of Section . e second and third
parts of the assumption are regularity conditions that help eliminate distracting anomalies. e
substantive part of the assumption is the rst part, which ensures that rm i’s market share in an
efficient allocation is weakly increasing in its own signal θi. Byeorem  of Chung and Ely (),
for any such allocation rule there exists a mechanism that implements it under IIC. Furthermore,
under fairly broad conditions such an allocation rule can be implemented under IIC without any
money burning. For instance, if the rms’ signals are statistically independent, then for any ef-
cient allocation rule x and an IIC mechanism ⟨x, y⟩, the alternative mechanism ⟨x, ŷ⟩, where
ŷi(θ) = E

[
yi(θ)

∣∣θi] − 1
N−1

∑
j ̸=i E

[
yj(θ)

∣∣θj], satis es IIC without money burning, because the
summation term does not depend on rm i’s announcement.⁷ Hence, under Assumption  and
independence, a patient, optimizing cartel should not engage in inefficient behavior such as price
wars. Even if the cartel could not transfer money, the folk theorem would typically still apply, and
any inefficient behavior should typically vanish in the limit as δ → 1.⁸

However, PPEs in general are not robust to the introduction of payoff-irrelevant signals, since
such signals generate complex higher-order beliefs. Speci cally, suppose that in each period each
rm i observes not only θi, but also a payoff-irrelevant signal ωi ∈ Ωi; let Ω ≡ Ω1 × · · ·ΩN , and

suppose that ψ is the joint distribution on Θ × Ω. e signal vector ω ∈ Ω is payoff-irrelevant
because it does not enter the objective function. Of course, it is relevant to the incentives that
each rm faces, because it affects the rm’s beliefs about the other rms’ beliefs and payoff-relevant

⁷If instead signals are correlated then rm i can in uence the summation term, so a different approach is required.
For N ≥ 3 and Θ nite, d’Aspremont, Crémer, and Gérard-Varet () show that efficiency is IIC-implementable
without money burning for generic probability distributions, regardless of the cost functions. For a setting without
transfers, Aoyagi () provides more complicated sufficient conditions for the case ofN = 2 with continuous signal
spaces; these conditions apply jointly to the probability distribution ϕ and the cost functions.

⁸See Section . for further discussion of this point.





signals. In such an environment the value of a PPE is bounded above by the value of a “full” version
of Eq.  that accounts for these incentive issues:

V full ≡ max
⟨x,y⟩:Θ×Ω→X×RN

E
∑
i

[
wi(ϑ)xi(ϑ,ϖ) + yi(ϑ,ϖ)

]
subject to

No subsidy:
∑
i

yi(θ, ω) ≤ 0 for all θ and all ω,

Full IIC: (θi, ωi) ∈ argmax
(θ̂i,ω̂i)∈Θi×Ωi

E

[
wi(θi, ϑ−i)xi

(
(θ̂i, ω̂i), (θ−i, ϖ−i)

)
+ yi

(
(θ̂i, ω̂i), (θ−i, ϖ−i)

)
∣∣∣∣∣(θi, ωi)

]
for all θi, all ωi, and all i,

()

where ϖ is the random variable of which ω is a realization. Full IIC is a much more demanding
requirement than IIC, as it depends on the full set of payoff-irrelevant details, and beliefs about
these details. Realistically, the details of the payoff-irrelevant information environment are likely
to be complex—all possible channels of information arrival have to be modeled, along with all
possible interactions among them. Full IIC can be reduced to ordinary IIC (i.e., V full = V max) only
if, for each rm i and conditional on any payoff-relevant private signal realization θi, its payoff-
irrelevant signalϖi is statistically independent of the other rms’ payoff-relevant signals ϑ−i. For
tractability the prior literature on collusive PPEs implicitly assumes this to be the case.

. Robust collusion

A mechanism satis es ex post incentive compatibility (EPIC) if each rm would still be willing to
announce truthfully after observing all the other rms’ signals. In principle, this truthful reve-
lation requirement applies to both payoff-relevant and payoff-irrelevant signals. However, if the
mechanism does not depend on the payoff-irrelevant signals, then each rm is willing to truthfully
announce its payoff-irrelevant signal. So if the allocation rule x does not depend on the payoff-
irrelevant signals, an EPICmechanism can ignore the payoff-irrelevant details of the environment.⁹
A PPE that is robust to arbitrary payoff-irrelevant details must satisfy EPIC in every period, taking
expectations over the future path of play. I call such an equilibrium an ex post perfect public equi-
librium (EPPPE). eorem , in Section , implies that cartel pro ts under EPPPE are bounded

⁹Bergemann and Morris () show that a limited converse is also true: if Ω is the universal type space generated
by the payoff-relevant signal space Θ and ψ has full support on Θ×Ω, then a mechanism satis es EPIC if (i) it satis es
Full IIC (see Eq. ) and (ii) its allocation rule does not depend on the payoff-irrelevant signals. is converse holds
for quasilinear environments with money-burning, as studied here. It remains an open question how strong a partial
converse can be stated if the allocation rule is allowed to depend on payoff-irrelevant signals. Chung and Ely ()
show that there are reasonable conditions under which the maxmin-optimal auction mechanism satisfying Full IIC
must also satisfy EPIC, but their conditions do not address the environment considered here. Regardless, a mechanism
in which the allocation rule depends on the payoff-irrelevant signals will generally not attain efficiency.





above by the value of the following mechanism design problem:

V ∗ ≡ max
⟨x,y⟩:Θ→X×RN

E
∑
i

[
wi(ϑ)xi(ϑ) + yi(ϑ)

]
subject to

No subsidy:
∑
i

yi(θ) ≤ 0 for all θ,

EPIC: θi ∈ argmax
θ̂i∈Θi

wi(θ)xi(θ̂i, θ−i) + yi(θ̂i, θ−i) for all θ and all i.

()

I say that a mechanism ⟨x, y⟩ is optimal if it solves this problem. e cartel can attain this bound
if it is sufficiently patient.¹⁰

If the rms have private values (such that wi(θ) can be written as wi(θi) for all i), the logic
of Groves () mechanisms directly implies that they cannot attain monopoly pro ts under
EPPPE. Under private values, any EPIC mechanism ⟨x, y⟩ that allocates efficiently is Groves a
mechanism. So the cartel runs a second-price “knockout auction” in which the low bidder earns
the right to serve the entire market at a price of , and pays the bid of the second lowest bid-
der. Let R(θ;x) be the “revenue” from this auction; it is equal to the bid of the second lowest
bidder. e cartel would like to give this revenue back to the member rms as much as possi-
ble without disrupting incentives, through a “rebate” function hi : Θ−i → R for each rm i. To
attain monopoly pro ts the cartel would have to fully rebate the revenue back to the rms; i.e.,∑

i yi(θ) = −R(θ;x) +
∑

i hi(θ−i) = 0 for all θ. is is often called the ”ex post budget balance”
requirement. Unfortunately for the cartel, any rebate functions that could attain ex post budget
balance would disrupt the incentives for the rms to tell the truth about their costs. Hence from
time to time the cartel will have unrebatable revenue that must be burned, such as by holding a
price war. Furthermore, by eorem , below, the same conclusion holds when values are inter-
dependent (i.e., not private). Since efficient allocation leads to price wars, monopoly pro ts are
unattainable. is is illustrated in the following example.

Example  (Private values, efficient allocation). Suppose thatN = 2, wi(θ) = θi for all i, and θ is
distributed according to the uniform distribution on [0, 1]2.

In a mechanism that allocates efficiently, transfers that minimize the expected cost of price
wars subject to EPIC are (see Lemma , in Appendix C):

yi(θ) = −xi(θ)θ−i + min
{
θ−i,

1
2

}
− 1

4 . ()

¹⁰On the equilibrium path, it simply employs the mechanism that solves Eq. . Off-the-equilibrium-path behavior,
however, is more subtle than under PPE. e rms cannot simply play the no-communication, no-transfers stage game
Bayesian-Nash equilibrium, since it violates EPIC. However, the rms can replicate the same expected pro ts under
EPIC by treating the consumers as the auctioneer in an appropriate generalized Groves mechanism (e.g., a second-price
procurement auction in the special case of private values), where the winner’s “payment” accrues to the consumers in
the form of a price discount.





is mechanism is illustrated in Figure . e rst term in Eq. , −xi(θ)θ−i, is rm i’s payment
in a second-price auction. e remaining terms do not depend on θi, so this is a Groves ()
mechanism. ese remaining terms attempt to rebate the revenues of the second-price auction—
sometimes fully, sometimes partially—to the rms as much as possible without disrupting incen-
tive compatibility. When θi > 1

2 > θ−i, the winner receives a rebate of its auction payment
minus 1

4 , while the loser receives a rebate of 1
4 , so there is no price war. In contrast, price wars

arise when both rms’ values are greater than 1
2 : both the winner and the loser receive rebates

of 1
4 , which add up to less than the winner’s auction payment. Similarly, price wars arise when

both rms’ values are less than 1
2 : the winner receives a rebate of its auction payment minus 1

4 ,
while the loser receives a rebate of less than 1

4 . In these regions the revenues depend on both θ1
and θ2, and therefore cannot be fully rebated back to the rms without disrupting their incentives.

When the rms initiate a price war, its severity depends on how much money must be burned.
For example, when θ = (1, 1), they must burn

∣∣∑
i yi(1, 1)

∣∣ = 1
2 , which they can accomplish by

setting the price to 1
2 rather than  for the current period. at is, they can burn all the required

money immediately by selling to the consumers at a discount. e value of this mechanism is 7
12 ,

re ecting the value of efficient allocation, 2
3 , minus the expected cost of price wars, 1

12 .

.. Optimally inefficient allocation

Since allocating efficiently leads to price wars, a natural question arises: When price wars are
taken into account, is it actually optimal to allocate efficiently? e rst main result of this paper,
eorem , shows that the answer is “no”: e cartel should give up some allocative efficiency in
order to reduce the cost of price wars.

eorem . Under Assumption , a two- rm cartel optimally allocates inefficiently.

Starting from an efficient allocation rule, the proof constructs a modi ed allocation rule x̂
that allocates efficiently except when θ falls within a small rectangular region E ⊂ Θ close to
the origin. On E the modi ed rule always assigns market share to the same rm. is rule still
gives each rm a market share that is monotonic in its own signal, so the modi ed rule is still
implementable under EPIC. When θ ∈ E the severity of the price wars can be reduced, since no
incentive payments are needed. For θ /∈ E, price wars are no worse than those that would occur
under an efficient mechanism. If E is sufficiently small, the gain from reducing the severity of
price wars is guaranteed to be greater than the loss in allocative efficiency. e formal proof is in
Appendix D; its intuition is illustrated in the following example.

Example  (Private values, inefficient allocation). Suppose thatN = 2, wi(θ) = θi for all i, and θ
is distributed according to the uniform distribution on [0, 1]2, as in Example .

Consider the following slight modi cation to the mechanism from Example , for small ε > 0:
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F . E E  In this example, each rm’s value is wi(θ) = θi,
and each rm’s signal θi is distributed uniformly on the interval [0, 1]. Panel (a) displays the efficient al-
location rule, expressed as rm ’s market share x∗1(θ); rm ’s market share is 1 − x∗1(θ). Panel (b)
displays the revenues that arise from a second-price knockout auction, R(θ;x) = miniθi. Panel (c) dis-
plays the rebates that are optimal conditional on the allocation rule, where each rm receives a rebate of
hi(θ−i) = min{θ−i,

1
2}−

1
4 . Panel (d) displays the aggregate transfers

∑
i yi(θ) = −R(θ;x)+

∑
i hi(θ−i).

Money is burned, via price wars, whenever
∑

i yi(θ) < 0.





• Allocate to rm  if maxiθi < ε, and otherwise allocate efficiently;

• e rms receive the following transfers:

y1(θ) = −x1(θ)I(θ2 ≥ ε)θ2 + I(θ2 ≥ ε)min
{
θ2,

1
2

}
− 1

4 , ()
y2(θ) = −x2(θ)max

{
θ1, ε

}
+ min

{
max{θ1, ε}, 12

}
− 1

4 . ()

is mechanism is illustrated in Figure . For each rm, the rst term in its transfer provides EPIC
incentives, while the remaining terms do not depend on its own signal. Observe that whenever
maxiθi > ε, this mechanism yields price wars identical to those in Example . e advantage
of this mechanism is that, conditional on maxiθi < ε, the allocation does not depend on the
rms’ values. Within this region, no monetary incentives are needed, so the price wars can be less

severe. Of course, the disadvantage is that sometimes the allocation is inefficient. Compared to
the mechanism in Example , this mechanism loses 1

6ε
3 to by allocating inefficiently, but gains 1

2ε
3

by reducing the severity of price wars, and hence represents an improvement for the cartel.

eorem  implies that in constructing an optimal EPPPE the allocation rule and the transfer
rule must be optimized simultaneously. is contrasts with PPE, for which, under quite broad
conditions, it suffices to rst select an efficient allocation rule and only then design transfers to
implement it. Accordingly, computing an optimal EPPPE is more difficult than computing an
optimal PPE. is is exempli ed by the fragility of the following, seemingly simple, example.

Example  (Private values optimal mechanism). Suppose that N = 2, wi(θ) = θi for all i, and θ
is distributed according to the uniform distribution on [0, 1]2, as in Examples –.

An optimal mechanism, illustrated in Figure , is as follows (where I is the indicator function
that takes the value  if its argument is true and takes the value  otherwise):

• Allocate efficiently if maxiθi ≥ 1
2 > miniθi, and otherwise split the market equally;

• Each rm receives a transfer yi(θ) = −1
4I(θi ≥

1
2) +

1
4I(θ−i ≥ 1

2).

is mechanism takes the intuition of Example  to the extreme: the allocation is xed whenever
maxiθi < 1

2 or miniθi > 1
2 , so no monetary incentives are needed over large swaths of the signal

space. Indeed, this mechanism allocates so inefficiently that price wars are eliminated entirely.
It can be implemented by allocating “property rights” over the market to each rm with equal
probability, and allowing them to trade at a posted price of 1

2 . e value to the cartel is 5
8 , better

than the 7
12 attained in Example .

Shao and Zhou () prove that the mechanism described in Example  is optimal. However,
their proof relies on the speci c properties of the uniform distribution. e following example
shows that price wars can arise even under private values.
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F . I E  In this example, each rm’s value is wi(θ) = θi,
and each rm’s signal θi is distributed uniformly on the interval [0, 1]. Panel (a) displays the inefficient
allocation rule for ε = 1

4 . e allocation is expressed as rm ’s market share x∗1(θ); rm ’s market share
is 1 − x∗1(θ). Panel (b) displays the revenues that arise from an inefficient auction with this allocation
rule, R(θ;x) = miniθi. Panel (c) displays the rebates that are optimal conditional on the allocation rule,
where each rm receives a rebate of hi(θ−i) = min{θ−i,

1
2} −

1
4 . Panel (d) displays the aggregate transfers∑

i yi(θ) = −R(θ;x) +
∑

i hi(θ−i). Price wars are less severe than in Example .
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F . O E  Suppose that N = 2, each rm’s value is wi(θ) =
θi, and each rm’s signal θi is distributed uniformly on the interval [0, 1]. Panel (a) displays the optimal
allocation rule, expressed as rm ’s market share x1(θ); rm ’s market share is 1 − x1(θ). Panel (b)
displays the revenues that arise from a posted price mechanism with random property rights, R(θ;x) =∑

i
1
4 I(θi ≥ 1

2 ). Panel (c) displays the rebates that are optimal conditional on the allocation rule, where
each rm receives a rebate of hi(θ−i) =

1
4 I(θ−i ≥ 1

2 ). Panel (d) displays the aggregate transfers
∑

i yi(θ) =
−R(θ;x) +

∑
i hi(θ−i). Since the transfers always sum to zero, there are no price wars.





Example  (Private values with price wars). Suppose thatN = 2, wi(θ) = θi for all i, and each θi
is independently distributed on [0, 1] according to a step distribution with a density of 2

5 for θi < 1
2 ,

and a density of 8
5 otherwise. An approximate optimal mechanism is illustrated in Figure . is

mechanism was computed numerically, following the linear programming approach outlined in
Lemma . Since the transfers do not always sum to zero, price wars arise for many realizations
of θ.

Price wars in this example arise because the probability distribution places relatively high prob-
ability on regions of Θ where the allocation would be inefficient under the mechanism in Exam-
ple . e allocation rule illustrated in Figure  allocates more efficiently, particularly in regions
that arise with high probability. At the same time, the transfers illustrated in Figure  imply price
wars mainly in regions that arise with low probability. Taking expectations, this mechanism with
price wars is superior to any mechanism that would eliminate price wars.

.. Optimal price wars

Example  shows that price wars may not arise in robust equilibria under private values, although
inefficient allocation is pervasive. However, the following theorem shows that it is optimal for
a two- rm cartel to engage in price wars if the rms’ costs are interdependent. Interdependent
costs can be interpreted as representing an industry with underlying common shocks as well as
idiosyncratic shocks, in which the shocks are observed imperfectly and privately, and such that
the uncertainty is not resolved until after the communication stage. Since the cartel in this model
produces an undifferentiated product, underlying common shocks can arise from shocks to the
markets for inputs. If each rm has relationships with different suppliers, the underlying common
shock could easily be confounded with their suppliers’ idiosyncratic shocks.

When the rms’ valuations are interdependent, the transfers they must make to implement all
but the most degenerate allocation rules depend on the ne details of the interdependence. It is
typically impossible to rebate such payments back to the rms without disrupting their incentives.

Assumption  (Global monotonic interdependence). ere existsB ∈ (1,∞) such that ∂wi
∂θ−i

> 1
B

for all θ and all i.

eorem . Under Assumption  and Assumption , generically¹¹ an optimal EPPPE involves price
wars on the equilibrium path.

e proof, in Appendix C, begins with Lemma , which shows that achieving ex post budget
balance under globally interdependent valuations requires the allocation rule to satisfy a partial
differential equation. ere are two classes of solutions to this PDE: any constant outcome rule,
and a particular set of differentiable non-constant outcome rules. However, any solution in either

¹¹e proof fails if w takes a particular non-generic form along the curve w1(θ) = w2(θ).
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F . A E  In this example, each rm’s value is
wi(θ) = θi, and each rm’s signal θi is distributed uniformly on the interval [0, 1]. Panel (a) displays the
optimal allocation rule, expressed as rm ’s market share x1(θ); rm ’s market share is 1−x1(θ). Panel (b)
displays the revenues that arise from the rms’ incentive payments, R(θ;x). Panel (c) displays the rebates
that are optimal conditional on the allocation rule, where each rm receives a rebate of hi(θ−i). Panel (d)
displays the aggregate transfers

∑
i yi(θ) = −R(θ;x) +

∑
i hi(θ−i). Since the rebates do not match the

revenues, price wars arise following some realizations of θ. is mechanism was computed numerically
using linear programming, where the signal space is discretized to the grid shown in the graphs.





of these classes can be improved upon by allocating market share to each rm i when θi is very
high and θ−i is very low, even though doing so requires some price wars. at is, under inter-
dependence, eliminating price wars entirely requires an extremely inefficient allocation rule. e
players are better off salvaging some efficiency even at the expense of engaging in price wars. is
is illustrated in Example .

Example . Suppose that N = 2, wi(θ) =
3
4θi +

1
4θ−i for all i, and θ is distributed according to

the uniform distribution on [0, 1]2. An approximate optimal mechanism is illustrated in Figure .
is mechanism was computed numerically, following the linear programming approach outlined
in Lemma . Since the transfers in this mechanism do not always sum to zero, price wars arise.
e allocation rule takes the form of a smoothed-over version of the posted-price mechanism in
Example , and manages to keep the price wars quite mild (relative to Example , for instance).

. Generalizations

.. No monetary transfers

e assumption that the rms can transfer money is convenient, but not necessarily realistic in
environments with antitrust enforcement. If the rms cannot make transfers, then they must seek
other ways to transfer utility. For example, they can play a non-stationary equilibrium in which
changes in continuation play substitute for transfers. e cartel can construct such equilibria using
the techniques of Fudenberg and Levine (). Speci cally, for each direction ξ ∈ RN , the cartel
must identify the mechanism ⟨xξ, yξ⟩ that solves a ξ-weighted version of Eq. . Each ⟨xξ, yξ⟩
de nes a half-space normal to ξ that attains the ξ-weighted value of ⟨xξ, yξ⟩. e intersection of
all such half spaces is the limiting set of utilities attainable under EPPPE as δ → 1. Naturally, this
attainable set is a subset of the particular half-space associated with Eq.  (unweighted); whether
the boundary of this set attains the value of Eq.  may depend on the details of the game. at is,
the cartel’s best-case scenario is to be able to make monetary transfers, but even if it cannot make
monetary transfers it may be able to approach the same value as δ → 1.

.. Private strategies

Kandori and Obara () show that equilibria in private strategies can outperform PPE in games
with imperfect monitoring. e intuition underlying their results is that by performing a private
experiment, a rm can observe a more informative signal of whether its cartel partners are coop-
erating. More informative signals enable better-targeted punishments, which can be enacted less
often while still providing strong incentives.

In collusion with private information, however, the only possible “private experiment” a rm
can perform is to misreport its own signal. Doing so does not affect its conditional beliefs about
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F . A E  In this example, each rm’s value is
wi(θ) = θi, and each rm’s signal θi is distributed uniformly on the interval [0, 1]. Panel (a) displays the
optimal allocation rule, expressed as rm ’s market share x1(θ); rm ’s market share is 1−x1(θ). Panel (b)
displays the revenues that arise from the rms’ incentive payments, R(θ;x). Panel (c) displays the rebates
that are optimal conditional on the allocation rule, where each rm receives a rebate of hi(θ−i). Panel (d)
displays the aggregate transfers

∑
i yi(θ) = −R(θ;x) +

∑
i hi(θ−i). Although the rebates resemble the

revenues, they do not precisely match. erefore, for many realizations of θ, a non-negligible price war
arises. is mechanism was computed numerically using linear programming, where the signal space is
discretized to the grid shown in the graphs.





the other rms’ signals, and therefore cannot aid in detecting their deviations. So the Kandori and
Obara critique of PPE does not apply to games with private information and communication.

Moreover, EPIC requires each rm to be willing to send its equilibrium message regardless of
the information on which the other rms are conditioning their messages, including their private
histories. Private histories are like payoff-irrelevant information—they generate potentially com-
plex higher order beliefs over the payoff-relevant signals. Hence EPIC rules out any non-trivial use
of private strategies.¹²

.. Imperfect monitoring

is paper focuses on private information about costs, but realistically the problem of monitoring
the rms’ pricing behavior may also be important. In general, the approach of the literature has
been to model these issues separately, with the implicit conjecture that there should be no worri-
some synergistic interactions when the two problems are combined in the same model. Intuitively,
the stage game with both private cost information and imperfect public monitoring of prices can
be split into a rst phase, in which private signals are realized and then the rms communicate
with each other, and a second phase, in which actions are taken privately and then a public moni-
toring signal is realized. e mechanism design approach outlined here applies to the rst phase,
and the approach of Fudenberg, Levine, and Maskin () applies to the second phase.

Speci cally, each rm’s EPIC constraint in the rst phase applies with expectations taken over
not only future periods but also over the realization of the monitoring signal. If the rms have
revealed their cost signals truthfully in the rst communication phase, then, following the realiza-
tion of the monitoring signal, additional transfers can be speci ed to enforce the desired pricing
actions. Under the Fudenberg, Levine, and Maskin () identi ability conditions, such transfers
can be budget balanced.

However, there remains the possibility that a rm could bene t from lying about its own cost
signal in the rst phase in order to trick the other rms into having incorrect beliefs about the dis-
tribution of themonitoring signal, and then selecting a deviant price in the second phase. Whether
this additional incentive constraint is satis ed depends on the details of the monitoring distribu-
tion. Without constraining these details, themost that can be inferred is that the value of an EPPPE
with perfect monitoring is an upper bound on the value of an EPPPE in an otherwise equivalent
game with imperfect monitoring.¹³

¹²For expositional and notational convenience, this paper de nes an EPPPE as a PPE constrained to satisfy EPIC.
Pursuant to this discussion of private strategies, however, an EPPPE could be de ned as a perfect extended-Bayesian
equilibrium (Battigalli , Fudenberg and Tirole ) that satis es a more general notion of EPIC. (Note that “se-
quential equilibrium” is not well de ned for games with continuum strategy spaces.)

¹³Because the payoff-relevant private cost information persists from the rst phase to the second phase, this is a
dynamic game. e closely related literature on dynamic mechanism design faces the same kind of difficulty, which is
why Pavan, Segal, and Toikka (), for example, study Bayesian Nash implementation rather than perfect Bayesian
implementation.





 General results

e fact that robust collusive equilibria cannot attain efficiency does not arise from any special
properties of the collusion games studied in Section . Instead, inefficiency arises generically in
a broader class of repeated games. eorem , below, shows that an optimal EPPPE is a solution
to a mechanism design problem with a no-subsidy constraint. eorem  provides necessary and
sufficient conditions in the separable payoff environment (Chung and Ely ) for an EPPPE to
attain efficiency, and eorem  then shows that generically every EPPPE is inefficient.

Consider the following general environment:

• N is a nite set of players, i = 1, . . . , N ;

• δ ∈ (0, 1) is a common discount factor;

• Θi is the set of private signals for player i in the stage game, with Θ ≡ Θ1 × · · · ×ΘN ;

• ϕ is the common prior probability measure on Θ;

• Mi is the set of public messages that player i can send, with Θi ⊂ Mi and M ≡ M1 ×
· · · ×MN ;

• Xi is the set of public actions for player i in the stage game, with X ≡ X1 × · · · × XN ;

• πi : Θ×X → R+ is player i’s uniformly bounded payoff function, with π ≡ (π1, . . . , πN );

• T ≡
{
t ∈ RN :

∑
i ti ≤ 0

}
is the space of net monetary payments, where ti > 0 indicates

that player i receives a positive quantity of money.

Signals are drawn independently over time and from the same distribution ϕ, although there
may be interdependence among the signals observed by different players within any particular
stage. e timing of the stage game is as follows: First, θ ∈ Θ is realized according to ϕ, and each
player i privately observes θi. Next each player i sends a public announcement mi ∈ Mi. en,
each player i chooses a public action χi ∈ Xi.¹⁴ Finally, the players receive a vector of monetary
payments t ∈ T.¹⁵ A player’s utility in the stage game is her payoff plus the payment she receives:
πi(θ, χ) + ti.¹⁶ In the repeated game, each player seeks to maximize her discounted sum of stage

¹⁴I restrict attention to pure strategy equilibria, but X itself may be viewed as a space of probability measures. For
example, the space of correlated action pro les would be χ ∈ X ≡ ∆

(
X1 × · · · × XN

)
, where each player non-

cooperatively selects an action χi ∈ Xi after observing an arbitrary public randomization device.
¹⁵More operationally, each player can pay any non-negative amount to any other player. ese bilateral payments,

combined with money burning, must sum to a vector in T.
¹⁶For simplicity, I assume that players cannot use their ex-post realized payoffs to make useful inferences about

their opponents’ true signals. One way to motivate this assumption is to assume that the discount factor re ects the
probability that the game will terminate at the end of each period, and that players obtain their true payoffs only when
the game terminates. In case the game cannot terminate, Mezzetti () shows how to construct efficient EPIC





game utilities. In addition to collusion with private costs, several other important applications
fall into this class, such as public goods, risk sharing, team production, externalities, and repeated
trade.

A perfect public equilibrium (PPE) is a strategy pro le in which, in each stage, each player con-
ditions his action on only the public history and his current private signal, and the strategies form
a Bayesian Nash equilibrium in the continuation game following any history. An ex post perfect
public equilibrium (EPPPE) is a PPE that satis es ex post incentive compatibility (EPIC, below) fol-
lowing every history, taking expectations over the future path of play. Appendix A de nes both
PPE and EPPPE formally. By the revelation principle, it is without loss of generality to restrict
attention to equilibria in which players report their signals truthfully, so EPIC can be de ned as
follows:

De nition . A mechanism ⟨x, y⟩ : Θ → X × T is ex post incentive compatible (EPIC) if

θi ∈ argmaxθ̂i∈Θi

(
πi(θi, ϑ−i, x(θ̂i, ϑ−i)) + yi(θ̂i, ϑ−i)

)
()

for all θ and for all i. An outcome rule x : Θ → X is ex post implementable if there exists an EPIC
mechanism ⟨x, y⟩.

. Bounding equilibrium utility

eorem , below, shows that the players’ aggregate utility in any EPPPE is bounded, regardless of
how patient they are, by the value of the simple static mechanism design problem of maximizing
aggregate utility subject to EPIC and a “no-subsidy” constraint:

V ∗ ≡ sup
⟨x,y⟩:Θ→X×RN

E
[∑

i

(
πi(θ, x(θ)) + yi(θ)

)]
s.t. EPIC and

∑
i

yi(θ) ≤ 0 for all θ. ()

Under two further assumptions, this bound can actually be attained by sufficiently patient
players. e rst assumption is purely technical. It casts the action spaceX as the space of lotteries
on a compact space of pure action pro les A, such as would be implied by the existence of an
arbitrary public randomization device.¹⁷

Assumption . X is the space of probability measures on a compact space A, and πi(θ, χ) =∫
A π

a
i (θ, a) dχ(a), where πai (θ, ·) is bounded and continuous onA for all θ and all i.

mechanisms in a static setting with interdependent payoffs by adding a second communication phase in which the
players announce their realized payoffs. However, such mechanisms cannot simultaneously satisfy EPIC and ex post
budget balance, and so they could not be used to construct efficient EPPPEs even if there were a second communication
phase at the end of each stage.

¹⁷Similar results could be proven for non-randomized mechanisms by imposing convexity on the space of outcomes
and linearity on the πi(θ, ·) functions.





e second assumption is more substantive: there must exist an ex post equilibrium in the
stage game. By backward induction there can be no transfers in such an equilibrium. In some
economic settings there exists an autarkic outcome that can serve this purpose, such as in a one-
shot trade setting where the seller never gives up the object because the buyer cannot commit to
pay for it. In the collusion games studied in Section , although no rm has intrinsic property
rights over the market, the cartel can still construct a mechanism in which a selected rm serves
the entire market, and sets a low price instead of paying a transfer to the other rms.

Assumption . ere exists an action rule x : Θ → X such that

πi(θ, x(θ)) ≥ πi
(
θ, (x̂i(θ̂i, θ−i), x−i(θ̂i, θ−i)

)
()

for all x̂i(θ̂i, θ−i) ∈ Xi, for all θ̂i ∈ Θi, for all θ, and for all i.

Intuitively, if a mechanism ⟨x, y⟩ solves Eq. , we can use it to construct a stationary, pure
strategy EPPPE as follows. Along the equilibrium path, the players reveal their signals truthfully to
each other, and implement the recommendations of the mechanism in every period. In particular,
to implement y they simply make transfers and burn money as called for. Since ⟨x, y⟩ is an EPIC
mechanism, and conforming to the mechanism yields the same expected utility in every future
period, EPIC is satis ed in every period along the equilibrium path. Upon observing any deviation,
such as a deviant action or deviant transfer, they trigger a permanent punishment. Assumption 
guarantees the existence of a trigger punishment that satis es EPIC in every period. Since π is
uniformly bounded, the punishment then deters any observable deviations if the players are patient
enough.

Compared to an equilibrium constructed in this manner, nothing is to be gained by varying
continuation utilities rather than transferring or burning money. us Eq.  bounds the utility
that can be attained in any EPPPE, regardless of how patient the players are. is is expressed in
the following theorem, which follows from the dynamic programming logic of Abreu, Pearce, and
Stacchetti () and Fudenberg and Levine (). e proof is in Appendix B.

eorem . Aggregate utility (in average terms) in any EPPPE is bounded above by V ∗, uniformly
for all δ < 1. Under Assumptions –, for δ < 1 sufficiently high there exists a stationary, pure
strategy EPPPE that attains this bound.

. EPIC-rich games

I term a game EPIC-simple if the no-subsidy constraint does not bind; e.g., the efficient allocation
rule can be implemented without any money burning. If on the other hand the no-subsidy con-
straint binds, I call the game EPIC-rich. In an EPIC-rich game, either money must be burned or
the action rule must be distorted in order to satisfy the no-subsidy constraint.





De nition . A game is EPIC-simple if

V ∗ = sup
⟨x,y⟩:Θ→X×RN

E
[∑

i

πi(θ, x(θ))

]
s.t. EPIC; ()

otherwise it is EPIC-rich.

Intuitively, the properties that make a game EPIC-simple are properties that trivialize either
the problem of balancing the budget or the problem of providing incentives. For an example, if
one player does not have private information, then she can insure the other players against budget
imbalances. is is the case in auction models when the auctioneer has a xed valuation of zero.
A second example is when the efficient action does not vary with θ; then no EPIC payments need
be made. is is the case in pure common value auctions, in which it does not matter which player
wins the object because all players value it equally. is is also the case in games that satisfy the
genericity conditions of Jehiel, Meyer-ter-Vehn, Moldovanu, and Zame () (multidimensional
types, interdependent preferences, and consumption externalities; see also Bikhchandani ),
in which only trivial action rules are implementable under EPIC. Trivial action rules can be imple-
mented without any transfers. ird, if payoffs are identical across players—that is, what is best for
any one is best for all—then the game is isomorphic to a one-player decision problem, and truthful
revelation may be taken for granted.

For some types of games there are knife-edge cases that are EPIC-simple. Chung andEly ()
give an example of this sort: a simple trading game between two players in which xi(θ) is the
probability that player i gets the object, and πi(θ, x(θ)) = (θi + aθ−i)xi(θ). e game is EPIC-
simple if and only if a = −1. Liu and Tian () show that a public good game with private values
and three or more players is EPIC-simple only if the utility functions take a particular non-generic
functional form. For N = 3, this is the quadratic form studied by Laffont and Maskin ().
In general, the functional forms they nd are solutions to (N − 2)-degree polynomial differential
equations.

More generally, the literature has found efficient allocation to be generally incompatible with
robust implementation. Hurwicz and Walker () show for exchange economies that dom-
inant strategy mechanisms generically cannot attain efficiency with budget balance.¹⁸ Gärtner
and Schmutzler () derive broad conditions under which EPIC merger mechanisms, in which
rms’ owners can exchange both money and shares in the merged entity, cannot implement effi-

cientmerger rules under budget balance. Optimal (but inefficient) dominant strategymechanisms
under budget balance have been studied by Hagerty and Rogerson () and Barberà and Jackson
(), among others.

To illuminate which games are EPIC-rich, I consider a special class of games that contains the

¹⁸eir environment has private values, so dominant strategy implementation is equivalent to EPIC implementation.





economic models most commonly used to study settings with private information. is class is
called the separable payoff environment (Chung and Ely ), and it is characterized by one-
dimensional signals and multiplicatively separable payoffs.

De nition . A game is in the separable payoff environment if, for each i ∈ N :

(i) Θi =
[
θ, θ
]
⊂ R;

(ii) πi(θ, χ) = zi(χ)wi(θ);

(iii) zi : X → R+ is uniformly bounded;

(iv) wi : Θ → R is continuous, uniformly bounded, differentiable, and strictly increasing in θi
for all θ−i;

(v) If x is efficient, then zi(x(θ)) is non-decreasing in θi for all θ−i.

Conditions (i–iv) place the game in the separable payoff environment as de ned by Chung and
Ely (). Condition (v) is added for convenience, to ensure that efficiency is ex post imple-
mentable (by Chung and Ely , eorem ). Lemma , in Appendix C shows how to use linear
programming to compute an optimal EPPPE in the separable payoff environment.

Given an ex post implementable action rule x, in an EPIC mechanism each player’s transfer
function must have a particular shape. Speci cally, Chung and Ely () Proposition  implies
that the envelope theorem (e.g., Milgrom and Segal Corollary ) fully determines each player’s
equilibrium utility for each θ−i, up to an additive constant yi(θ, θ−i): for all θ,

πi(θ, x(θ)) + yi(θ) = πi
(
(θ, θ−i), x(θ, θ−i)

)
+ yi(θ, θ−i)

+

θi∫
θ

∂wi(si, θ−i)

∂si
zi
(
x(si, θ−i)

)
dsi.

()

Each player i’s transfer yi(θ) can be decomposed as yi(θ) = hi(θ−i) − ri(θ;x), where hi(θ−i) ≡
yi(θ, θ−i) is her xed transfer, the portion of her transfer that does not vary with θi; and ri(θ;x)
is her EPIC payment, the portion of her transfer that is pinned down by EPIC and the choice of
action rule x. en rearranging Eq.  gives

ri(θ;x) = πi(θ, x(θ))− πi
(
(θ, θ−i), x(θ, θ−i)

)
−

θi∫
θ

∂wi(si, θ−i)

∂si
zi
(
x(si, θ−i)

)
dsi. ()

Let R(·;x) ≡
∑

i ri(·;x) be the aggregate EPIC payment function.





Here I extend the seminal result of Hurwicz and Walker () to the present context, where
valuations may be interdependent. I identify a simple necessary and sufficient condition for EPIC-
richness in the separable payoff environment.

De nition . A function a : Θ → R is (N − 1)–additively separable if there exist functions
αi : Θ−i → R, i = 1, . . . , N , such that a(θ) =

∑
i αi(θ−i) for all θ.

eorem . In the separable payoff environment, a game is EPIC-simple if and only if, for any
action rule x̂ that solves the right hand side of Eq. , the aggregate EPIC payment function R(·; x̂)
is (N − 1)–additively separable.

e proof of sufficiency, in Appendix C, is straightforward. If there is an efficient action rule
with an (N − 1)-additively separable EPIC payment function, then by de nition there exist func-
tions αi : Θ−i → R, i = 1, . . . , N , such that R(θ; x̂) =

∑
i αi(θ−i) for all θ. en each player i

can be given a rebate equal toαi(θ−i)without disrupting incentives, and the budget will balance ex
post. e argument for necessity is more subtle, and relies on the fact that an optimal mechanism
always exists in the separable payoff environment, as follows from Lemma .

(N − 1)–additive separability relates closely to the “decomposability” property that Hurwicz
and Walker () identify. However, because valuations may be interdependent, (N − 1)–
additive separability does not translate into a criterion that can be expressed directly in terms
of the primitives. Instead, as the interdependent trading game example of Chung and Ely ()
illustrates, interdependence of just the right form can generate (N − 1)–additive separability. So
in principle, to know whether a game is EPIC-rich or EPIC-simple, one must actually examine
the aggregate EPIC payment functions for the efficient action rules and identify whether any is
(N − 1)-additively separable. is is illustrated in the following simple example regarding public
goods.

Example . Consider an indivisible public good, which can be provided with any probability χ ∈
[0, 1]. Agent i’s valuation is wi(θ) = θi ∈ [−1, 1] and her evaluation is πi(χ) = χ. An efficient
provision rule is x̂(θ) = I

(∑
i θi > 0

)
. To implement this rule under EPIC requires a Groves

() mechanism, in which ri(θ; x̂) =
(
x̂(θ) − x̂(−1, θ−i)

)∑
j ̸=i θj . But x̂ is not (N − 1)-

additively separable, andR(·; x̂) is a non-degenerate linear transformation of x̂, so the game is not
(N − 1)-additively separable. erefore the game is EPIC-rich.

ough (N−1)-additive separability ofR(·; x̂) is a necessary and sufficient condition for EPIC-
efficiency, it is not expressed directly in terms of the primitives of the game. ough Liu and Tian
() nd primitive conditions for a narrow subset of the separable payoff environment, necessary
and sufficient conditions in terms of primitives across the entire separable payoff environment
remain elusive. Instead, I prove a genericity result: Games in the separable payoff environment
are generically EPIC-rich.





eorem . Suppose that X is the space of probability measures on a nite setA. In the separable
payoff environment, x Θ, and endow the space of possible w and z functions with the topology of
pointwise convergence. en every non-degenerate game in the separable payoff environment for X
and Θ is contained in the closure of an open set of EPIC-rich games.

e proof, in Appendix C, exploits the fact that games in the separable payoff environment
generically have interdependent valuations. Starting from a game with private values that is EPIC-
simple, the proof constructs a perturbation that introduces some interdependence over a small
region, disrupting (N − 1)-additive separability. More intuitively, since the EPIC payments called
for in a generalized Groves mechanism are non-linear transformations of the individual valuation
functions wi, if each individual’s valuation function wi is itself not (N − 1)-additively separable,
then generically the aggregate EPIC payment function R(·; x̂)—a nonlinear combination of the
individual valuation functions—is also not (N − 1)-additively separable.¹⁹

 Conclusion

is paper provides a new explanation for why even a patient cartel may engage in price wars.
If the information environment is complex, the cartel may seek an arrangement that is robust to
payoff-irrelevant signals that disrupt common knowledge. A robust equilibrium—termed an ex
post perfect public equilibrium (EPPPE)—cannot attain efficiency, but eliminates the unmodeled
burden of maintaining rigid protocols in the face of complexity. In an optimal EPPPE, the rms do
not allocate market shares efficiently. Depending on the environment, their optimal EPPPE may
or may not involve price wars. A sufficient condition for price wars to be optimal is that the rms’
costs are interdependent, e.g., driven by both idiosyncratic and common underlying shocks. In the
literature, this is the rst explanation for why a patient, optimizing cartel should engage in price
wars if it is able to communicate and play an asymmetric equilibrium.

e cartel’s inability to collude efficiently does not arise from special features of the particular
collusion game under study. Rather, this paper shows that inefficiency arises generically among
games in the separable payoff environment, which contains a great array of economically relevant
models, including public goods and trade. For an EPPPE to attain efficiency in the separable payoff
environment, it is necessary and sufficient for the aggregate EPIC payment function, which can be
computed from the primitives of the stage game, to be (N − 1)-additively separable. However,
this condition is generically violated, so efficiency is generically unattainable.

ough themechanismdesign literature has long recognized that efficiency is typically unattain-
able in economic models under EPIC and ex post budget balance, the problem of optimal ex post
implementation under a no-subsidy condition has largely been ignored. (To my knowledge, Shao
and Zhou —developed concurrently with the present paper—is the only exception to this

¹⁹Indeed, this same basic intuition underlies eorem .





generalization.) Perhaps this is because it strains the imagination that a mechanism designer who
can commit to enforcing transfers (a necessary assumption in static contexts) should object to a
budget that is balanced ex ante but unbalanced ex post. Only when the mechanism encompasses
an entire society should such a designer object to an ex post budget imbalance.²⁰ If instead a
static mechanism is interpreted as a contract among the parties, then in addition to EPIC and the
no-subsidy condition, ex post participation constraints ought to be imposed. For instance, partic-
ipation constraints are the source of inefficiency in the seminal Myerson and Satterthwaite ()
theorem.

In the context of collusion, however, the no-subsidy condition follows naturally from the re-
striction that rms should not bring in money from outside the game. eir commitment to the
mechanism arises from the threat of endogenous punishments, relaxing participation constraints.
Since there is no exogenous authority, there is no presumption that the rms ought to be able to
obtain insurance against budget imbalances. If they could indeed accept budget imbalances, such
abilities should be modeled within the game; this is the approach taken by Athey and Miller 
for a bilateral trading relationship.²¹

²⁰Indeed, debate over the budget imbalance properties of dominant strategy implementation arose in the s
regarding society-wide mechanisms; see Greenberg, Mackay, and Tideman () and Groves and Ledyard (a,b).

²¹In addition, a new literature on dynamic mechanism design has arisen contemporaneously with this paper, study-
ing the related problem faced by a mechanism designer with commitment power who wants to implement a particular
outcome in a dynamic environment (Athey and Segal , Bergemann and Välimäki , Parkes and Singh ,
Pavan et al. ). is literature primarily addresses efficient and revenue-maximizing mechanisms, rather than con-
strained optimal mechanisms.





Appendix A Equilibrium

is section provides the notation necessary to describe strategies and equilibria, given any message space
M = M1 × · · · × MN satisfying Mi ⊃ Θi for all i. A behavioral stage strategy for player i is a triplet
si = ⟨m̂i, x̂i, t̂i⟩ that contains a reporting rule m̂i : Θi → ∆Mi, an action rule x̂i : Θi ×M → ∆Xi, and
a payment rule t̂i : Θi × M × X → ∆RN

+ , where the realization of t̂i,j(θi, µ, χ) ≥ 0 is the amount that
player i pays player j, and t̂i,i(θi, µ, χ) ≥ 0 is the amount that player i burns. Abusing notation, I write
pure stage strategies, behavioral stage strategies, and the realizations of behavioral stage strategies all in the
same way, relying on the context to distinguish them.

A behavioral stage strategy pro le is a vector s ≡ (s1, . . . , sN ), or, equivalently, s ≡ ⟨m̂, x̂, t̂⟩. e
public history at the end of period τ is Hτ ≡ (h1, . . . , hτ ), and the private history for player i is Hτ

i ≡
(h1i , . . . , h

τ
i ); H0 and H0

i are null histories. A behavioral strategy for player i is a function σi that maps
player i’s private history (of any length) to a probability distribution over behavioral stage strategies. Play-
ers can choose their behavioral stage strategies using an arbitrary public randomization device, so that
(indulging in more abuse of notation) σ({Hτ−1

i }Ni=1) need not be statistically independent. Given a behav-
ioral strategy pro le σ and a set of private histories {Hτ−1

i }Ni=1, the ex post stage game payoff for player i
in period τ is

π̂i
(
θ;σ({Hτ−1

i }Ni=1)
)
= π

(
θ, x̂(θ, m̂(θ))

)
+
∑
j ̸=i

t̂j,i
(
θj , m̂(θ), x̂(θ, m̂(θ))

)
−
∑
j

t̂i,j
(
θj , m̂(θ), x̂(θ, m̂(θ))

)
,

()

where the understanding is that ⟨m̂, x̂, t̂⟩ is the outcome of the randomization speci ed by the stage strategy
σ({Hτ−1

i }Ni=1).
A public strategy for player i is a behavioral strategy such that σi(Hτ−1

i ) = σi(H̃
τ−1
i ) whenever

Hτ−1 = H̃τ−1; i.e., a behavioral strategy in which player i ignores her private history. When σi is a pub-
lic strategy, I write σi(Hτ−1) for simplicity. Given a pro le of public strategies, observe that the payoff
player i earns by deviating to any alternative strategy can be attained by deviating to a public strategy, since
her private history does not covary with the public strategies of the other players. Given a pro le of public
strategies σ, the value to player i of the public historyHτ is

v̂i(H
τ ;σ) = (1− δ)E

[ ∞∑
τ̃=τ+1

δτ̃−1π̂i(ϑ
τ̃ ;σ(H τ̃−1})

∣∣∣∣∣Hτ , σ

]
, ()

where ϑτ̃ is the random signal vector in period τ̃ .

De nition . A perfect public equilibrium, or PPE, is a public strategy pro le σ such that, for all public
historiesH , the behavioral stage strategy σ(H) = ⟨m̂, x̂, t̂⟩ satis es





(i) for all signals θi ∈ Θi and for all i,

θi ∈ arg max
µi∈Θi

E


πi
(
θi, ϑ−i;χ

)
+
∑
j ̸=i

t̂j,i
(
ϑj , µi, m̂−i(ϑ−i), χ

)
−
∑
j

t̂i,j
(
θi, µi, m̂−i(ϑ−i), χ

)
+

δ

1− δ
v̂i(H

′;σ)

∣∣∣∣∣∣∣∣∣H, θi
 , ()

where

χ =
(
x̂i(θi, µi, m̂−i(ϑ−i)), x̂−i(ϑ−i, µi, m̂−i(ϑ−i))

)
, ()

H ′ =
(
H, (µi, m̂−i(ϑ−i), χ, t̂(µi, m̂−i(ϑ−i), χ)

)
; ()

(ii) for all signals θi ∈ Θi, for all message pro les µ ∈ Θ, and for all i,

x̂i(µ) ∈ arg max
χi∈Xi

E


πi
(
θi, ϑ−i;χ

)
+
∑
j ̸=i

t̂j,i
(
ϑj , µ, χ

)
−
∑
j

t̂i,j
(
θj , µ, χ

)
+

δ

1− δ
v̂i(H

′;σ)

∣∣∣∣∣∣∣∣H, θi
 , ()

where χ =
(
χi, x̂−i(ϑ−i, µ)

)
andH ′ =

(
H, (µ, χ, t̂(µ, χ)

)
;

(iii) for all signals θi ∈ Θi, for all message pro les µ ∈ Θ, for all action pro les χ ∈ X , and for all i,

t̂i(µ, χ) ∈ arg max
ti∈RN

E
[∑
j ̸=i

t̂j,i
(
ϑj , µ, χ

)
−
∑
j

ti,j
(
θj , µ, χ

)
+

δ

1− δ
v̂i(H

′;σ)
∣∣∣H, θi], ()

whereH ′ =
(
H, (µ, χ, ti, t̂−i(µ, χ)

)
.

De nition . An ex post perfect public equilibrium, or EPPPE, is a PPE σ such that for all signal vectors θ,
for all public historiesH , and for all i,

θi ∈ arg max
µi∈Θi


πi
(
θ;χ
)
+
∑
j ̸=i

t̂j,i
(
θj , µi, m̂−i(θ−i), χ

)
−
∑
j

t̂i,j
(
θj , µi, m̂−i(θ−i), χ

)
+

δ

1− δ
v̂i(H

′;σ)

 , ()

where

χ =
(
x̂i(θi, µi, m̂−i(θ−i)), x̂−i(θ−i, µi, m̂−i(θ−i))

)
, ()

H ′ =
(
H, (µi, m̂−i(θ−i), χ, t̂(µi, m̂−i(θ−i), χ)

)
. ()

Appendix B Proof ofeorem 

eorem  (page ) is an immediate consequence of the following three lemmas.





Lemma . Given a discount factor δ < 1, suppose that σ is a PPE andH is a public history. en∑
i

v̂i(H;σ) ≤ sup
⟨x,y⟩:Θ→X×RN

E
[∑

i

(
πi(θ, x(θ)) + yi(θ)

)]
s.t. IIC and

∑
i

yi(θ) ≤ 0 for all θ. ()

If in addition σ is an EPPPE, then
∑

i v̂i(H;σ) ≤ V ∗.

Proof. Taking parts (i)–(iii) of De nition  as given, substitute

yi(θ) =
∑
j ̸=i

t̂j,i
(
θj , θ, x(θ, )

)
−
∑
j ̸=i

t̂i,j
(
θi, θ, x(θ)

)
+

δ

1− δ
E
[
v̂i(H, θ, x(θ), t̂(θ, θ, x(θ);σ)

∣∣H,σ] ()

into Eq.  to obtain the interim incentive compatibility (IIC) constraint for amechanism ⟨x, y⟩ : Θ → X×T:

θi ∈ arg max
µi∈Θi

E
[
πi
(
θi, ϑ−i;x(µi, ϑ−i)

)
+ yi(µi, ϑ−i)

∣∣θi] for all θi and all i. ()

at is, a PPE must satisfy IIC after every history, taking expectations over the future path of play. Let
Ṽ ≡ supH′

∑
i v̂i(H

′;σ); then
∑

i v̂i(H;σ) ≤ Ṽ , so
∑

i ŷi(θ) ≤
δ

1−δ Ṽ . It follows that

1

1− δ

∑
i

v̂i(H;σ) ≤ sup
⟨x,y⟩:Θ→X×RN

E
[∑

i

(
πi(θ, x(θ)) + yi(θ)

)]
s.t. IIC and

∑
i

yi(θ) ≤
δ

1− δ
Ṽ for all θ;

()

rearranging yields Eq. . If in addition σ is an EPPPE it must also satisfy Eq. , so
∑

i v̂i(H;σ) ≤ V ∗.

An EPPPE is stationary if σ(H) = σ(H ′) for all equilibrium path public historiesH andH ′.

Lemma. Under Assumption , if there exists amechanism ⟨x, y⟩ that solves Eq. , then for δ < 1 sufficiently
high there exists a stationary pure strategy EPPPE that attains

∑
i v̂i(H

0;σ) = V ∗.

Proof. Suppose that ⟨x, y⟩ solves Eq. . Construct a public strategy pro le σ as follows. First, consider any
public historyH that contains an observable deviation. By Assumption  there exists an ex post equilibrium
in the stage game. Let σ(·;H) be this equilibrium, and let p be stage game payoff vector associated with
σ(·;H). If

∑
i pi = V ∗, then also play this stage game equilibrium following every history to complete the

proof.
Next, suppose that

∑
i pi < V ∗. Consider any public historyH that contains no observable deviations.

For each i, let σ(H) = ⟨m̂, x̂, t̂⟩ be a pure public strategy pro le such that, for all i ∈ N ,

m̂i(θi) = θi, ()
x̂i(θi, θ) = xi(θ), ()∑

j ̸=i

t̂j,i
(
θj , m̂(θ), x̂(θ, m̂(θ))

)
−
∑
j ̸=i

t̂i,j
(
θj , m̂(θ), x̂(θ, m̂(θ))

)
= yi(θ) + fi, ()





where f is chosen to set
∑

i fi = 0 and E
[
πi(θ, x(θ) + yi(θ)

]
+ fi > pi. A pro le of such transfers t̂ exists

because
∑

i yi(θ) ≤ 0 and
∑

i pi < V ∗. In addition, following the realization of any message pro le µ /∈ Θ,
choose x̂(θ, µ) and t̂(θ, µ, x̂(θ, µ)) = (0, . . . , 0) so as to constitute an ex post equilibrium in the remainder
of the stage game (which exists by Assumption ). Similarly, following the realization of any χ ̸= x̂(θ, µ),
choose t̂(θ, µ, χ) = (0, . . . , 0) so as to constitute an ex post equilibrium in the remainder of the stage game.

By construction, this stationary pure strategy pro le satis es EPIC and yields average utility of V ∗. After
every observable deviation, the players make zero transfers and then play a stage game ex post equilibrium
forever. If they are sufficiently patient, the threat of the trigger punishment suffices to discourage any ob-
servable deviations. is completes the proof.

Lemma . Under Assumptions –, there exists a mechanism that solves Eq. .

Proof. e proof follows (Balder , Example .). De ne the topology T ≡ {∅,N} × F on N × Θ,
where F is the topology associated with ϕ. Let K ≡ X × [−B,B]N , where B ∈ R+ is large relative
to the uniform bound on π. Let u(i, θ, (χ, t)) ≡ πi(θ, χ) + ti, U(i, θ, (χ, ψ)) ≡

∑
j û(j, θ, (χ, t)), and

W (i, θ) ≡
{
(χ, t) ∈ K :

∑
j tj ≤ 0

}
.

e main task is to establish that Balder’s Assumptions .–. are satis ed. Assumption  implies
that X is a compact, convex metric space (by Aliprantis and Border , eorem .), so K is convex,
metrizable, and compact, satisfying Balder’s Assumption .. Assumption  implies that πi(θ, ·) is a linear
function on X for all θ and all i, so that Balder’s Assumption . is satis ed; it also implies that W (i, θ)

is a closed and convex-valued correspondence, satisfying Balder’s Assumption .. Although u(·) is not
T -measurable, u(i, ·) clearly is, and soU(·, ·, (χ, t)) is T -measurable—satisfying Balder’s Assumption ..
Since π is uniformly bounded, U is uniformly bounded as well, and so Balder’s Assumption . is satis-
ed. e linearity of πi(θ, ·) also implies that U is concave and continuous, satisfying Balder’s Assumption

.. Finally, Assumption  guarantees that the set of EPIC mechanisms is non-empty, implying Balder’s
Assumption .. Now Balder’s eorem . implies that there exists a solution to Eq. .

Appendix C Proofs for Section 

Let Y (θ) ≡
∑

i hi(θ−i)−R(θ;x), r(θ;x) ≡
(
ri(θ−i);x

)N
i=1

, and h(θ) ≡
(
hi(θ−i)

)N
i=1

.

Lemma . Let Γ ≡
{
πx(χ) : χ ∈ X

}
⊂ RN and, given γ : Θ → Γ, let

R̃(θ;ω) ≡
∑
i

(
πθ
i (θ)γ(θ)− πθ

i (θ, θ−i)γ(θ, θ−i)−
θi∫
θ

∂πθ
i (si, θ−i)

∂si
γ(si, θ−i) dsi

)
. ()

en
maxγ:Θ→C, (hi:Θ−i→R)Ni=1

E
[∑

i

γ(ϑ)wi(ϑ) +
∑
i

hi(ϑ−i)− R̃(ϑ; γ)

]
s.t.

∑
i

hi(θ−i) ≤ R̃(θ; γ) for all θ;

γ(θ) ≥ γ(θ′i, θ−i) for all θ′i ≤ θi, all θ, and all i;

()

is a linear program. Furthermore, if ⟨γ∗, h∗⟩ solves Eq. , x∗ solves πx(x∗(θ)) = γ∗(θ) for all θ, and
y∗i (θ) ≡ h∗i (θ−i)− ri(θ;x

∗) for all θ and all i, then ⟨x∗, y∗⟩ is an optimal mechanism.





Proof. By Assumption , C is compact and convex. Hence Eq.  is evidently a linear program. EPIC is
redundant with the functional form of the objective and the monotonicity requirement on σ (Chung and
Ely , eorem ), so it can be imposed without altering the program. en substituting x and y into
the program to eliminate σ and h, and deleting the redundant monotonicity constraint, yields Eq. .

Proof of eorem  (page ). “If ”: Suppose there exists x∗ efficient such thatR(·;x∗) is (N−1)–additively
separable; then by de nition there exist functions hi : Θ−i → R, i = 1, . . . , N , such that

∑
i hi(θ−i) =

R(θ;x∗) for all θ. Let yi(θ) = hi(θ−i) − ri(θ;x
∗); then ⟨x∗, y⟩ is EPIC by construction. As claimed, the

game is EPIC-simple because x∗ is efficient and Y (θ) =
∑

i

(
hi(θ−i)− ri(θ;x

∗)
)
= 0 for all θ.

“Only if ”: Suppose the game is EPIC-simple; i.e., V ∗ = sup⟨x,y⟩:Θ→X×RN E
[∑

i πi(θ, x(θ))
]
subject

to EPIC. en there exists some sequence of (possibly randomized) EPIC mechanisms {⟨xk, yk⟩}∞k=1 such
that, as k → ∞, (i) E

[∑
i πi(θ, xk(θ))

]
approaches V ∗ and (ii) Yk(θ) = 0 has for all θ and for all k. is

implies that an optimal mechanism ⟨x∗, y∗⟩ must achieve both EPIC efficiency and Y ∗(θ) = 0 for all θ,
since any other mechanism can be outperformed by some member of the sequence. Since by Lemma  an
optimal mechanism must exist, y∗ can be decomposed into Y ∗(θ) =

∑
i h

∗
i (θ−i)−R(θ;x∗), which, since

Y ∗(θ) = 0 for all θ, implies that R(θ;x∗) is additively separable, as claimed.

Proof of eorem  (page ). Fixing X (the space of probability measures on a nite set A) and Θ = [θ, θ],
any game in the separable utility environment is de ned by (w, z), where z is linear and w is continuous,
uniformly bounded, and differentiable. Let G be the vector space containing all games satisfying these
conditions, endowed with the topology of pointwise convergence. e separable payoff environment, G∗, is
a subset of this space, requiring also that wi(θ) and zi(x(θ)) be strictly increasing in θi for all i, where x is
an efficient allocation rule. Say that a game in the separable payoff environment is degenerate if every EPIC-
efficient action rule is constant on Θ. Since a non-degenerate allocation rule x is EPIC-implementable if
zi(x(θ)) is strictly increasing in θi for all i, evidently the set of non-degenerate games in the separable utility
environment, G∗ ∈ G, has non-empty interior.

Say that a game is strict if there exists a sublattice Z ⊂ Θ and an efficient action rule x such that
(i) |Z| = 2N ; (ii) there exist θ, θ′ ∈ Z with θi ̸= θ′i for all i; (iii) for each θ ∈ Z, argmaxχ∈X

∑
i πi(θ, χ)

is a singleton; and (iv) there exist ζ, ζ ′ ∈ Z such that argmaxχ∈X
∑

i πi(ζ, χ) ̸= argmaxχ∈X
∑

i πi(ζ
′, χ).

Since G∗ contains only non-degenerate games and z is linear, the set of strict games is open and dense
in G∗. Moreover, since A is nite, by continuity (De nition (iii–iv)) for any strict game g there exists a
lattice Z ⊂ Θ, satisfying conditions (i–iv) above, such that g is contained in an open set of strict games
whose efficient action rules, restricted to Z, are identical.

Consider a strict game g that is EPIC-simple. Select any lattice Z ⊂ Θ and efficient action rule x
satisfying conditions (i–iv) above. It is without loss of generality to suppose that ζ and ζ ′ differ on only the
Θi dimension for some i, by transitivity, and that ζ ′i > ζi. Let E(ζ, ζ ′) be the “edge” of Z between ζ and ζ ′;
i.e., E(ζ, ζ ′) ≡ {βζ + (1 − β)ζ ′ : β ∈ (0, 1)}. Consider a set Υ ⊂ Θ that contains E(ζ, ζ ′) but does not
intersect Z or any other edge of Z. By Eq. , perturbations of wi that are restricted to Υ alter ri(ζ ′;x) but
do not affect the EPIC payments at any other point in Z. Inspection of Eq.  makes clear that an open set
of such perturbations, whose closure contains the null perturbation, strictly changes ri(ζ ′;x) while leaving
the efficient action rule unchanged on Z . (If game g had private values, such a perturbation necessarily
introduces interdependence, in order for the other edges of Z to remain unperturbed.) Restrict attention
to such perturbations.





By eorem , for game g there exist functions αi : Θ−i → R, i = 1, . . . , N , such that
∑

i αi(θ−i) =∑
i ri(θ;x) for all θ ∈ Z . But then the perturbed game is EPIC-rich, since there do not exist functions

α′
i : Θ−i → R, i = 1, . . . , N , such that

∑
i α

′
i(θ−i) = I(θ = ζ ′) for all θ ∈ Z .

Finally, although the perturbations considered thus far were restricted to a subspace of G, since R(·;x)
restricted toZ is continuous onG∗, every such perturbed game itself is contained in an open set of EPIC-rich
games.

Appendix D Proofs for Section 

De nition . Fixed transfer function h∗ is conditionally optimal given x if it solves

max
(hi:Θ−i→R)Ni=1

E
[∑

i

hi(ϑ−i)−R(ϑ;x)
]

s.t.
∑
i

hi(θ−i)−R(θ;x) ≤ 0 ∀ θ. ()

Let h∗(·;x) be conditionally optimal given x. e next two lemmas are used in the proof of eorem .

Lemma . Under Assumption , given an efficient allocation rule x̂, there exists a conditionally optimal xed
transfer function h∗(·; x̂) and a point b on the interior of Θ such that

(i) w1(b) = w2(b);

(ii) h∗i (θ−i; x̂) = min
{
wi(λ

∗
i (θ−i), θ−i), wi(b)

}
− 1

2wi(b);

where λ∗i (θ−i) solves wi(λi, θ−i) = w−i(λi, θ−i).²² Furthermore, H∗(θ; x̂) − R(θ; x̂) = 0 for all θ ∈
[b1, 1]× [0, b2] ∪ [0, b1]× [b2, 1].

Proof. An allocation rule x̂ is efficient if and only if x̂ allocates the object to a player with a highest valuation;
i.e., if x̂i(θ) = 0 for all i /∈ argmaxj [wj(θ)], for all θ. e EPIC payments for an efficient allocation rule take
the form R(θ; x̂) ≡

∑
i ri(θ; x̂) =

∑
i I{x̂i(θ)=1}wi(λ

∗
i (θ−i), θ−i).

Fix h−i, assuming nothing about its form, and let k−i = supϑi

[
h−i(ϑi)

]
. e solution to Eq. , given

x̂ and h−i xed, is to maximize hi pointwise subject to hi(θ−i) ≤ R(θ; x̂) − h−i(θi) for all θ. For any
particular θi, the constraint hi(θ−i) ≤ R(θ; x̂)− h−i(θi) requires

hi(θ−i) ≤

wi

(
λ∗i (θ−i), θ−i

)
− h−i(θi) if θ−i ∈ [0, λ∗−i(θi)],

w−i(λ
∗
−i(θi), θi)− h−i(θi) otherwise.

()

e “otherwise” part of the constraint is at, while the part of the constraint for θ−i ∈ [0, λ∗−i(θi)] strictly
increases in θ−i under the regularity conditions. Since wi

(
θ−i, λ

∗
i (θ−i)

)
= w−i

(
θ−i, λ

∗
i (θ−i)

)
, the two

parts of the constraint coincide at θ−i = λ∗−i(θi) and at no other point. us the constraints for all θi ∈ Θi

can be simpli ed as follows:

hi(θ−i) ≤ min
{
wi

(
λ∗i (θ−i), θ−i

)
− k−i, inf

ϑi

[
w−i

(
λ∗−i(ϑi), ϑi

)
− h−i(ϑi)

]}
. ()

²²at is, given θ−i, λ∗
i (θ−i) is the signal for player i at which she is pivotal.





Let h∗i equal this upper bound pointwise. If b−i satis es

wi

(
λi(b−i), b−i

)
− k−i = inf

ϑi

[
w−i(λ

∗
−i(ϑi), ϑi)− h−i(ϑi)

]
, ()

then

h∗i (θ−i) = min
{
wi

(
λ∗i (θ−i), θ−i

)
, wi

(
λ∗i (b−i), b−i

)}
− k−i. ()

Applying these results to both hi and h−i implies that wi

(
λ∗i (b−i), b−i

)
= w−i

(
λ∗−i(bi), bi

)
and

supϑ−i

[
hi(ϑ−i)

]
= wi(b) − k−i = ki. Since lump sum adjustments do not affect incentives, set ki =

k−i =
1
2wi(b) to yield (i) and (ii) as claimed.

Finally, on the region [b1, 1]× [0, b2],∑
i

h∗i (θ−i; x̂)−R(θ; x̂) = w1(λ
∗
1(θ2), θ2) + w2(b)− w2(b)− w1(λ

∗
1(θ2), θ2) = 0, ()

and similarly for the region [0, b1]× [b2, 1].

Lemma . In the context of Lemma , suppose that an ex post implementable allocation rule x is identical
to x∗ except on a rectangle [0, ε1]× [0, ε2] with ε1 and ε2 sufficiently small. en

∑
i h

∗
i (θ−i;x)−R(θ;x) =

Y ∗(θ;x∗) for all θ /∈ [0, ε1]× [0, ε2].

Proof sketch. Use the proof of Lemma , but replace wi(λ
∗
i (θ−i), θ−i) with ri((1, θ−i);x). Since

ri((1, θ−i);x) = ri((1, θ−i);x
∗), for θ−i ∈ [ε−i, 1], this will imply that h∗i (θ−i;x

∗) = h∗i (θ−i;x). For θ−i ∈
[0, ε−i], it will imply that ri((1, θ−i);x) − ri((1, θ−i);x

∗) = h∗i (θ−i;x
∗) − h∗i (θ−i;x), with y∗i (θ;x∗) =

y∗i (θ;x) for all θ /∈ [0, ε1]× [0, ε2].

Proof of eorem  (page ). On a sufficiently small rectangle that borders the origin, rst order approxi-
mations are valid under Assumption . So for η > 0 small, for all θ ∈ Eη ≡ [0, η] × [0, βη] assume that
w1(θ) = c10 + c11θ1 + c12θ2, w2(θ) = c20 + c21θ1 + c22θ2, and ϕ(θ) = c30 + c31θ1 + c32θ2, and let
β ≡

(
c11 − c21

)/(
c22 − c12

)
. By Assumption , min{c30, c11, c22} > 0 and 0 < β <∞.

Let xη1(θ) = χ1 = 1− xη2(θ) ∈ [0, 1] if θ ∈ Eη , and xη(θ) = x∗(θ) otherwise; note that any χ1 ∈ [0, 1]

will preserve monotonicity. By Lemma , Y ∗(θ;x∗) = Y ∗(θ;xη) on all ofΘ\Eη . Hence to demonstrate an
improvement we need only to show that ∆V > 0, where

∆V ≡
η∫

E

((
w1(ϑ)− w2(ϑ)

)(
χ1 − x∗1(ϑ)

)
+ Y ∗(ϑ;xη) + Y ∗(ϑ;x∗)

)
dϕ(ϑ). ()

De ne the following, and note their values for θ ∈ Eη :

∆h∗2(θ1) ≡ h∗2(θ1;x
η)− h∗2(θ1;x

∗) = w2(θ1, βη)χ1 − w2(θ1, βθ1), ()
∆h∗1(θ2) ≡ h∗1(θ2;x

η)− h∗1(θ2;x
∗) = w1(η, θ2) (1− χ1)− w1(

1
β θ2, θ2), ()

∆r1(θ) ≡ r1(θ;x
η)− r1(θ;x

∗) = −w1(
1
β θ2, θ2) I{θ1>θ2/β}, ()

∆r2(θ) ≡ r2(θ;x
η)− r2(θ;x

∗) = −w2(θ1, βθ1) I{θ2>βθ1}. ()





Divide Eη into two parts, Eη
1 ≡ {θ ∈ Eη : θ2 < βθ1} and Eη

2 ≡ {θ ∈ Eη : θ2 ≥ βθ1}; then

∆V =

∫
Eη

1

((
w1(ϑ)− w2(ϑ)

)
(χ1 − 1) + ∆h∗2(ϑ1) + ∆h∗1(ϑ2)−∆r1(ϑ)

)
dϕ(ϑ)

+

∫
Eη

2

((
w1(ϑ)− w2(ϑ)

)
χ1 +∆h∗2(ϑ1) + ∆h∗1(ϑ2)−∆r2(ϑ)

)
dϕ(ϑ).

()

Note that ∆V is linear in χ1, so that a maximum is to be found either at χ1 = 0 or at χ1 = 1. us
it suffices to show that ∆V ≡ 1

2

(
∆V |χ1=0 + ∆V |χ1=1

)
> 0. Solving explicitly for ∆V yields ∆V =

β
12 (c11 + βc22)c30η

3 +Aη4, where A is a term that does not vary with η. Since the rst term is an order of
η larger than the second term, it suffices to note that the rst term is strictly positive under the regularity
conditions.

e next three lemmas are used in the proof of eorem .

Lemma . In a two- rm collusion game, suppose that the rms’ valuation functions satisfy globally interde-
pendent valuations. en generically any optimal EPIC mechanism satisfying ex post budget balance must
employ a differentiable allocation rule satisfying

3
(
w2(θ)− w1(θ)

) ∂2x1
∂θ2∂θ1

=
∂w1

∂θ2

∂x1
∂θ1

+
∂w2

∂θ1

∂x2
∂θ2

()

for all θ ∈ int(Θ).

Proof. Since Eq.  is a linear program with continuously differentiable constraints, the solution is piecewise
differentiable. at is, there exists a countable partition ofΘ, such that each partition element is a Borel set
with a piecewise continuously differentiable boundary, and the optimal mechanism is continuously differ-
entiable on the interior of each partition element. Each such partition element is a regular region; a regular
boundary is a shared boundary of adjacent regular regions.

Given x : Θ → X , θ ∈ int(Θ), and ε = (ε−1 , ε
+
1 , ε

−
2 , ε

+
2 ) ∈ R4

+, let θ− ≡ (θ1 − ε−1 , θ2 − ε−2 ),
θ± ≡ (θ1 + ε+1 , θ2 − ε−2 ), θ∓ ≡ (θ1 − ε−1 , θ2 + ε+2 ), and θ+ ≡ (θ1 + ε+1 , θ2 + ε+2 ). Assume that ε is small
enough that {θ−, θ±, θ∓, θ+} ⊂ Θ, and let

∆2(θ, ε) ≡
(
R(θ−;x)−R(θ±;x)

)
−
(
R(θ∓;x)−R(θ+;x)

)
. ()

A mechanism can satisfy ex post budget balance if and only if ∆2(θ, ε) = 0 for every θ and ε. When
ε→ (0, 0, 0, 0) along some path, I write ε→ 0.

By Eq. , for any ex post budget balanced EPIC mechanism, ∆2(θ, ε) can be expressed in terms of x





as follows:

∆2(θ, ε) =
∑
i



xi(θ
+)wi(θ

+)− xi(θ
∓)wi(θ

∓)−
θ+
i∫

θ−
i

∂wi(si, θ
+
−i)

∂si
xi(si, θ

+
−i) dsi

− xi(θ
±)wi(θ

±) + xi(θ
−)wi(θ

−) +

θ+
i∫

θ−
i

∂wi(si, θ
−
−i)

∂si
xi(si, θ

−
−i) dsi


. ()

Given a path along which ε→ 0, for i = 1, 2 let

η−i ≡ lim
ε→0

(
xi(θ

+
i , θ

−
−i)− xi(θ

−)
)
> 0, ()

η+i ≡ lim
ε→0

(
xi(θ

+)− xi(θ
−
i , θ

+
−i)
)
> 0, ()

and let
(
α+
i , α

−
i

)
∈ [0, 1]2 solve

lim
ε→0

1

ε−i + ε+i

θ+
i∫

θ−
i

∂wi(si, θ
+
−i)

∂si
xi(si, θ

+
−i) dsi =

∂wi

∂θi

∣∣∣
θ

(
α+
i xi(θ

−
i , θ

+
−i) + (1− α+

i )xi(θ
+)
)
, ()

lim
ε→0

1

ε−i + ε+i

θ+
i∫

θ−
i

∂wi(si, θ
−
2 )

∂si
xi(si, θ

−
2 ) dsi =

∂wi

∂θi

∣∣∣
θ

(
α−
i xi(θ

−) + (1− α−
i )xi(θ

+
i , θ

−
−i)
)
. ()

Differentiable regions Suppose that θ is in the interior of a regular region. en x is differentiable,
implying that η+i = η−i = 0 for both i. en, letting ε−1 = ε+2 = ξ and ε+1 = ε−2 = ξ2, and taking ξ → 0,
so that α+

i = α−
i = 1

2 , it can be shown that²³

lim
ξ→0

∆2(θ, ε)

ξ
= 3
(
w1(θ)− w2(θ)

) ∂2x1
∂θ1∂θ2

+
∂w1

∂θ2

∂x1
∂θ1

+
∂w2

∂θ1

∂x2
∂θ2

; ()

i.e., Eq.  holds. e remainder of the proof shows that there are no regular boundaries in the interior
of Θ, and hence Θ itself is a regular region.

Discontinuities First I rule out discontinuous regular boundaries other than vertical, horizontal, or
along the curve w1(θ) = w2(θ). It can be shown that

lim
ε→0

∆2(θ, ε) = (η−2 − η+2 )
(
w1(θ)− w2(θ)

)
, ()

implying that either η−2 = η+2 or w1(θ) = w2(θ). Suppose there is a discontinuous regular boundary
other than horizontal or vertical. en choose θ on the discontinuous regular boundary, and let ε → 0

in a direction such that one of η−2 and η+2 is zero and the other is strictly positive. If w1(θ) ̸= w2(θ), this
contradicts ∆2(θ, ε) = 0.

²³Derivations for the limits given in this proof are available on request.





Next I rule out discontinuities along the curve w1(θ) = w2(θ). Let ε+1 = k+1 ξ, ε−1 = k−1 ξ, ε+2 = k+2 ξ,
and ε−2 = k−2 ξ, where all four coefficients are strictly positive. en it can be shown that

lim
ξ→0

∆2(θ, ε)

ξ
= k+1

(
∂w1

∂θ1

(
α+
1 (η

−
1 + η−2 − η+2 )− α−

1 η
−
1

)
+
∂w2

∂θ1
η+2

)
+ k+2

(
∂w2

∂θ2

(
α+
2 η

+
2 − α−

2 η
−
2

)
+
∂w1

∂θ2
(η−1 + η−2 − η+2 )

)
+ k−1

(
∂w1

∂θ1

(
η+2 − η−2 − α−

1 η
−
1 + α+

1 (η
−
1 + η−2 − η+2 )

)
+
∂w2

∂θ1
η−2

)
+ k−2

(
∂w2

∂θ2

(
η−2 − α−

2 η
−
2 − (1− α−

2 )η
+
2

)
+
∂w1

∂θ2
η−1

)
.

()

Suppose there is a discontinuity along the curve w1(θ) = w2(θ). en choose k+1 , k−1 , k+2 , and k−2 so that
η+2 = η−2 = 0, making the second and fourth lines of Eq.  both strictly negative. Of course this implies that
the sum of the rst and third lines must be strictly positive, but moreover it implies that (k+1 , k−1 , k+2 , k−2 )
must lie in a -dimensional plane inR4. Now perturb these values slightly out of the plane without violating
the condition that η+2 = η−2 = 0, and by doing so generate a contradiction to ∆2(θ, ε) = 0.

Finally, I rule out horizontal discontinuities (and, by symmetry, vertical discontinuities). Suppose there
is a horizontal discontinuity at θ, so that η−1 = η+1 = 0 and η+2 = η−2 > 0. en, taking ε = (ξ, ξ, ξ, ξ) and
ξ → 0, it can be shown that

lim
ξ→0

∆2(θ, ε)

2ξ
=
∂w2

∂θ1
η−2 −

(
w1(θ)− w2(θ)

)
lim
ξ→0

(∂x1
∂θ1

∣∣∣
θ±

− ∂x1
∂θ1

∣∣∣
θ+

)
. ()

Since the rst term on the right hand side is strictly positive, this discontinuity cannot cross the curve
w1(θ) = w2(θ). If such a discontinuity exists where w1(θ) > w2(θ) (a similar argument holds for w1(θ) <

w2(θ)), there exists a “starting point” θ∗ ≡
(
maxθ̃1{θ̃1 : η−2 (θ̃1, θ2) = 0}, θ2

)
such that w1(θ

∗) ≥ w2(θ
∗).

en it can be shown that limξ→0
1
ξ∆

2(θ∗, ε) = −∞ unless η+2 (θ∗) = 0 as well (regardless of η−1 (θ∗) and
η+1 (θ

∗)). Hence η+2 , as a function of θ, must be continuous in θ1. It is also a geometric fact that

∂η+2
∂θ1

= lim
ξ→0

(∂x1
∂θ1

∣∣∣
θ±

− ∂x1
∂θ1

∣∣∣
θ+

)
, ()

which, combined with Eq. , yields the differential equation

∂w2

∂θ1
η+2 =

(
w1(θ)− w2(θ)

)∂η+2
∂θ1

. ()

e boundary condition at θ∗ is η+2 (θ∗) = 0. If π1(θ∗) > π2(θ
∗), then η+2 (θ1, θ∗2) = 0 for all θ1 is the

unique solution, and there can be no horizontal discontinuity. If instead π1(θ∗) = π2(θ
∗), differentiating

both sides of Eq.  with respect to θ1 yields

∂2w2

∂θ21
η+2 +

∂w2

∂θ1

∂η+2
∂θ1

=
(∂w1

∂θ1
− ∂w2

∂θ1

)∂η+2
∂θ1

+
(
w1(θ)− w2(θ)

)∂2η+2
∂θ21

, ()





and substituting in θ∗, where w1(θ
∗) = w2(θ

∗) and η+2 = 0, implies that

2
∂w2

∂θ1

∣∣∣
θ∗

∂η+2
∂θ1

∣∣∣
θ∗

=
∂w1

∂θ1

∣∣∣
θ∗

∂η+2
∂θ1

∣∣∣
θ∗

. ()

Since generically 2∂w2

∂θ1

∣∣
θ∗ ̸= ∂w1

∂θ1

∣∣
θ∗ everywhere along the curve w1(θ) = w2(θ), generically it must be

that ∂η+
2

∂θ1

∣∣
θ∗ = 0. Continuing to differentiate in this manner, we see inductively that each succeeding higher

order derivative of η+2 with respect to θ1 must satisfy an equation like Eq. , and therefore must equal
zero generically. at is, generically there can be no horizontal discontinuity at all. Swapping the players,
the same argument generically rules out vertical discontinuities, and hence generically there can be no
discontinuities anywhere.

Non-differentiabilities First, I rule out the possibility that x could be non-differentiable anywhere
w1(θ) ̸= w2(θ). Suppose that x is continuous at such a boundary, but not differentiable. Without loss
of generality (we could swap these pairs and make the same argument), let ε−1 = ε+1 = ξ and ε−2 = ε+2 = kξ

and choose k ∈ (0, 1) sufficiently small that θ− and θ∓ are on one side of the boundary, and θ± and θ+ are
on the other side, as ξ → 0. It can be shown that

lim
ξ→0

∆2(θ, ε)

2kξ
=
(
w2(θ)− w1(θ)

)
lim
ξ→0

(∂x1
∂θ2

∣∣∣
θ−

− ∂x1
∂θ2

∣∣∣
θ+

)
. ()

But since w1(θ) ̸= w2(θ), it must be that limξ→0
∂x1

∂θ2

∣∣
θ− = limξ→0

∂x1

∂θ2

∣∣
θ+ , and by symmetry the same is

true for ∂x2

∂θ1
, so in fact xmust be differentiable, contrary to the existence of such a boundary.

Finally, I rule out the possibility that x could be non-differentiable along the curve w1(θ) = w2(θ).
Suppose there is a non-differentiable regular boundary along w1(θ) = w2(θ). Let ε−1 = ε+2 = ξ and
ε+1 = ε−2 = ξ2; then θ± is on one side of the boundary, while θ−, θ∓, and θ+ are on the other side, as ξ → 0.
It can be shown that

lim
ξ→0

∆2(θ, ε)

ξ2
= lim

ξ→0

(
∂w1

∂θ2

∂x1
∂θ1

∣∣∣
θ±

+
∂w2

∂θ1

∂x2
∂θ2

∣∣∣
θ±

)
. ()

But since ∂w1

∂θ2
and ∂w2

∂θ1
are both strictly positive, it must be that limξ→0

∂x1

∂θ2

∣∣
θ± = 0 and limξ→0

∂x1

∂θ2

∣∣
θ∓ = 0,

and by symmetry the same is true for ∂x2

∂θ1
, so in fact x must be differentiable, contrary to the existence of

such a boundary.
In summary, there can be no discontinuities or non-differentiabilities at any regular boundary. Finally,

any solution to a differential equation such as Eq.  is smooth, soΘ itself is a regular region. is completes
the proof.

Lemma . In a two- rm collusion game, suppose that the rms’ valuation functions satisfy globally interde-
pendent valuations. en an optimal regular mechanism cannot use a constant allocation rule.

Proof. Without loss of generality, consider a constant action rule with x1(θ) = χ1 ≤ 1
2 for all θ. Since

ri(θ;x) = 0 for all θ and all i, let y = h − r(·;x), with hi(θ−i) = 0 for all θ and all i as well. Now, for
ε > 0 small, consider an alternative action rule x, such that x1(θ) = 1 for all θ ∈ T ≡ [1 − ε, 1] × [0, ε],
and x1(θ) = χ1 otherwise. Choose h2(θ1) = (1− χ2)π2(θ1, ε) for θ1 ≥ 1− ε, and h2(θ1) = 0 otherwise;





choose h1(θ2) = 0 for all θ. Since r2(θ) = (1 − χ1)π2(θ1, ε) for θ ∈ [1 − ε, 1] × (ε, 1] and r2(θ) = 0

elsewhere, while r1(θ) = (1− χ1)π1(1− ε, θ2) for θ ∈ T and r1(θ) = 0 elsewhere,

E[Y (ϑ)] =

∫
T

(
1− χ1

)(
w2(ϑ1, ε)− w1(1− ε, ϑ2)

)
dϕ(ϑ). ()

At the same time, the increase in expected aggregate payoff is

∑
i

E[πi(ϑ, x(ϑ))]−
∑
i

E[πi(ϑ, x(ϑ))] =
∫
T

(
1− χ1

)(
w1(θ)− w2(θ)

)
dϕ(θ). ()

Hence the improvement in the value of the mechanism is

∑
i

E[πi(ϑ, x(ϑ))]−
∑
i

E[πi(ϑ, x(ϑ))]− maxϑ[Y (ϑ)]

= (1− χ1)

∫
T

(
w1(ϑ)− πθ

1(1− ε, ϑ2) + w2(ϑ1, ε)− πθ
2(ϑ)

)
dϕ(ϑ), ()

which is strictly positive under the regularity conditions.

Lemma . In a two- rm collusion game, if the rms have globally interdependent valuations, then, gener-
ically, for any mechanism ⟨x, y⟩ satisfying ex post budget balance, if x is not constant then for any suffi-
ciently small open neighborhood U ∋ (1, 0) there exists B ∈ (1,∞) such that, for all θ ∈ U ∩ int(Θ),
∂x1(θ)
∂θ1

> 1
B < −∂x1(θ)

∂θ2
.

Proof. Any such mechanism ⟨x, y⟩ must satisfy Eq.  by Lemma . Consider the region D ≡
{
θ ∈ Θ :

w1(θ) ≥ w2(θ)
}
. Eq.  implies that ∂xi

∂θi
= 0 for both i wherever w1(θ) = w2(θ), so x is constant along

this curve. Furthermore, for any point θ ∈ int(D),

∂x1
∂θ1

∣∣∣∣
θ

=

1∫
θ2

−I{(θ1,s2)∈D}
∂2x1
∂θ1∂s2

ds2. ()

By Eq. , the integrand on the right hand side of Eq.  is non-negative for all θ. At θ = (1, 0), if the
left hand side of Eq.  is zero, then the integrand on the right hand side must be zero pointwise, because
otherwise the regularity condition ∂x1

∂θ1
≥ 0 would be violated for some θ = (1, θ2). Hence x is constant on

{1} × [0, 1] ∩ D. By monotonicity, x must also be constant on all of D. Since a similar argument could be
made for the point θ = (1, 0), and by assumption x is not constant on all of Θ, to avoid any contradiction
it must be that ∂x1

∂θ1

∣∣
(1,0)

> 0. Since x is also twice differentiable, there must exist B ∈ (1,∞) and a
neighborhood U of (1, 0) on which ∂x1

∂θ1
> 1

B . By similar arguments, the same is true of −∂x1

∂θ2
.

Proof of eorem  (page ). By Lemma , under globally interdependent valuations a mechanism satisfy-
ing ex post budget balancemust satisfy Eq. . Any constant allocation rule satis es Eq. , but by Lemma 
such a rule cannot be an optimal regular mechanism. So instead suppose there exists a regular mechanism
satisfying Eq. , for which the allocation rule x is not constant.





Now, choose ε > 0 sufficiently small that T ≡ (1 − ε, 1] × [0, ε) ⊂ U satis es the above claim, and
consider an alternative action rule x, such that x1(θ) = 1 for all θ ∈ T , and x1(θ) = x1(θ) otherwise. en

r1(θ;x) = r1(θ;x) + I{θ∈T }

(
w1(θ)

(
1− x1(θ)

)
−

θ1∫
1−ε

∂w1(s1, θ2)

∂s1

(
1− x1(s1, θ2)

)
ds1

)
, ()

r2(θ;x) = I{θ/∈T }

(
r2(θ;x) + I{θ1>1−ε}

(
w2(θ1,0)x2(θ1,0)+

ε∫
0

∂w2(θ1,s2)

∂s2
x2(θ1,s2)ds2

))
. ()

Choose

h2(θ1) ≡ h∗2(θ1;x) + I{θ1>1−ε}

(
w2(θ1, 0)x2(θ1, 0)+

ε∫
0

∂w2(θ1, s2)

∂s2
x2(θ1, s2)ds2

)
()

and h1 = h∗1(·;x). en Y (θ) =
∑

i h
∗
i (θ−i;x)−R(θ;x) + c = c for all θ ∈ Θ\T , while, for θ ∈ T ,

Y (θ) = h∗1(·;x) + h∗2(θ1;x)− r1(θ;x) + w2(θ1, 0)x2(θ1, 0)− w1(θ)
(
1− x1(θ)

)
+

ε∫
0

∂w2(θ1, s2)

∂s2
x2(θ1, s2) ds2 +

θ1∫
1−ε

∂w1(s1, θ2)

∂s1

(
1− x1(s1, θ2)

)
ds1

=

ε∫
θ2

∂w2(θ1, s2)

∂s2
x2(θ1, s2)ds2+

θ1∫
1−ε

∂w1(s1, θ2)

∂s1
x2(s1, θ2)ds1 −

(
w1(θ)− w2(θ)

)
x2(θ)

()

where the last equality holds because the mechanism using x is ex post budget balanced. By Lemma , x2
has uniformly bounded rst derivatives on T , so the integral terms are on the order of εx2(1− ε

2 ,
ε
2 ), while

the non-integral terms are on the order of x2(1− ε
2 ,

ε
2 ). Hence for ε small the aggregate transfers for θ ∈ T

are approximately Y (θ) ≈ −
(
w1(1 − ε

2 ,
ε
2 ) − w2(

ε
2 ,

ε
2 )
)
x2(1 − ε

2 ,
ε
2 ), which is strictly negative under the

regularity conditions. Hence

E[Y (ϑ)] =

∫
T


ε∫

ϑ2

∂w2(ϑ1, s2)

∂s2
x2(ϑ1, s2) ds2 +

ϑ1∫
1−ε

∂w1(s1, ϑ2)

∂s1
x2(s1, ϑ2) ds1

−
(
w1(ϑ)− w2(ϑ)

)
x2(ϑ)

 dϕ(ϑ). ()

At the same time, the increase in aggregate payoff is

∑
i

E[πi(ϑ, x(ϑ))]−
∑
i

E[πi(ϑ, x(ϑ))] =
∫
T

(
w1(ϑ)− w2(ϑ)

)
x2(ϑ) dϕ(ϑ). ()





Hence the improvement in the value of the mechanism is∑
i

E[πi(ϑ, x(ϑ))]−
∑
i

E[πi(ϑ, x(ϑ))] + E[Y (ϑ)]

=

∫
T

 ε∫
ϑ2

∂w2(ϑ1, s2)

∂s2
x2(ϑ1, s2) ds2 +

ϑ1∫
1−ε

∂w1(s1, ϑ2)

∂s1
x2(s1, ϑ2) ds1

 dϕ(ϑ) > 0.
()

Hence x cannot be the allocation rule for an optimal regular mechanism.
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