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1 Introduction

Consider a class of infinitely repeated games with private information and communication. Each
stage game begins with each player observing his own private signal. (Signals are identically and
independently distributed over time, but not necessarily across players.) The players then have the
opportunity to communicate by sending each other simultaneous public messages. After com-
municating, each player selects an action. In such games, players face the tension of collectively
wanting to share information in order to coordinate their activities, while each of them individu-
ally faces an incentive to misrepresent his own information to the others. This tension complicates
the problem of coordination by requiring that the players give each other incentives to reveal their
private information.

Fudenberg, Levine, and Maskin (1994, hereafter FLM) prove a folk theorem (Theorem 8.1) for
such games: as players become more and more patient, they can approximate, as average payoffs
in a perfect public equilibrium (PPE) in the repeated game, any stage game payoffs that are “fea-
sible” and “individually rational.” FLM focus mainly on games with imperfect public monitoring,
in which actions, rather than information, are private. To apply their public monitoring results
to games with private information, FLM invoke three limiting assumptions: (i) the signal space is
finite, (ii) the private signals are statistically independent, (iii) each player’s payoff does not depend
on other players’ signals (“independent payoffs”).

In this paper I prove a folk theorem for games with monetary payments that bypasses these
limitations. In such games, sufficiently patient players can support any incentive compatible and
individually rational payoffs in the stage game as the average payoffs in a stationary PPE of the
repeated game. Transferable utility simplifies the provision of incentives, allowing a direct proof.

In a previously circulated version of this paper I claimed to also have proven folk theorems for
games without monetary payments, but a significant error in my proof was discovered by Satoru
Takahashi.

In addition to the folk theorems, this paper extends the “mechanism design approach,” initiated
by Athey and Bagwell (2001) for the case of collusion with hidden costs, to apply to a general class
of games. In the mechanism design approach, the problem of designing a PPE in the repeated
private information game is converted to the problem of constructing a recursive mechanism, as if
there were an institution that in each stage receives the players’ messages and then instructs them
how to act. The mechanism is recursive because in each period it promises them a certain level of
utility in the continuation game, and when the next period begins this promised utility determines
the mechanism to be used in the continuation game. The combination of monetary payments at
the end of the period and changes in promised future utility provide the incentives for players to
reveal their information truthfully. The problem of constructing a recursive mechanism, in turn,
can be expressed (in part) as a static mechanism design problem, to which standard techniques
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apply. The mechanism design approach is compared with the FLM approach in Section 1.1 and
developed formally in Section 3.

1.1 Comparison with the FLM approach

A comparison with FLM’s approach to games with private information shows why the mechanism
design approach yields a broader set of conclusions. In both approaches, the problem of construct-
ing a PPE in the repeated game is successively converted into simpler problems, until the result
is attained. At each step of simplification, there are conditions that must be imposed. The FLM
approach, as described above, begins by converting a private information game to a public moni-
toring game. Specifically, FLM converted a private information game to a public monitoring game
with a “product structure,” where each player’s action gives rise to a separate monitoring indica-
tor, and these indicators are statistically independent. The monitoring indicator for each player
is the realization of her message, but for these messages to be statistically independent there can
be no interdependence among the private signals that the players observe. Hence FLM’s first step
imposes statistical independence on the signals.¹

The second step of the FLM approach is to prove that in games with product structures any
smooth setW of feasible and individually rational payoff profiles is “decomposable on tangent hy-
perplanes.” That is, for each payoff profile on the boundary ofW , the hyperplane tangent toW at
that profile separates W from some extreme payoff profile, and the outcome function that yields
this extreme payoff profile can be supported with appropriate incentives by a set of continuation
rewards that lie in the hyperplane. FLM were able to prove decomposability on tangent hyper-
planes by assuming finite signal spaces and independent payoffs, and then applying their results
for public monitoring games with product structures.

Finally, FLM proved that if W is decomposable on tangent hyperplanes and the players are
sufficiently patient then any point inW can be supported as the average payoffs of a PPE. SinceW—
as an arbitrary smooth set of attainable and individually rational payoff profiles—can include points
arbitrarily close to any attainable and individually rational payoff profile, this last step yields the
folk theorem.

The mechanism design approach follows a different path. As described above, the approach
begins by shifting the focus from PPE to recursive mechanisms. This step is based on the dynamic
programming approach developed by Abreu, Pearce, and Stacchetti (1990), FLM, and others, but
with an additional simplification. Though in the game they can send any arbitrary messages and
take their subsequent actions non-cooperatively, when participating in the recursive mechanism

¹A more minor limitation is that for this step FLM need to assume that the players take no additional actions
subsequent to sending their messages—that an outcome is automatically selected based on the realized messages, such
as by an exogenous mechanism designer. I allow the players to take actions non-cooperatively after communicating.
See Section 3 for details.
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the players are assumed to reveal their information directly to each other and to obey the mecha-
nism’s instructions.

The second step of the mechanism design approach is to convert the problem of designing a
recursive mechanism into a static mechanism design problem, by lumping together the monetary
payments and changes in promised future utility into a “static transfer function.” Static mecha-
nisms should satisfy interim incentive compatibility (IIC)²—the requirement that each player be
willing to reveal his information truthfully given his interim beliefs about other players.

When considering games with monetary payments, I look for mechanisms that satisfy ex post
budget balance (EPBB)—the requirement that the static transfers sum to zero across players after
every realization of the private signals. Under a condition on the probability measure over private
signals (“Condition C”, after d’Aspremont, Crémer, and Gérard-Varet (2003), henceforth ACGVa),
any IIC-implementable outcome function is also implementable with EPBB. When there are two
players, Condition C is equivalent to statistical independence, but when there are three or more
players Condition C is satisfied for generic distributions if the signal space is finite (d’Aspremont,
Crémer, and Gérard-Varet (2004), henceforth ACGVb). For games with monetary payments, it is
then possible to prove the folk theoremdirectly, by explicitly constructing a stationary equilibrium.

In sum, the mechanism design approach allows me to impose milder conditions than FLM:
Condition C is generically satisfied when the signal space is finite and there are three or more
players, while the notion that transfers should be uniformly bounded is implicit in any plausible
application.

1.2 Other related literature

Following FLM, a number of papers in the literature investigate the possibility of efficient equilibria
in repeated games with private information and communication. None of them, however, relax
more than two of the three key limitations in FLM’s folk theorem, and each is tied to the structure
of a particular game.

Athey and Bagwell (2001) study a collusion game with discrete types, statistical independence,
and independent payoffs. They use themechanismdesign approach to construct optimal equilibria
for impatient firms. Athey and Bagwell (2008) examine a similar model in which each firm’s costs
are correlated over time.

Aoyagi (2003, 2007) considers collusion in repeated auctions. Aoyagi (2003) allows contin-
uous signal spaces, statistical interdependence, and interdependent payoffs, but the equilibrium
he constructs is not asymptotically efficient. Aoyagi (2007) restricts the signal space to be finite,
and constructs an equilibrium that is asymptotically efficient as the players become more patient.
In work conducted simultaneously with the present paper, Martin and Vergote (2004) expand
on Aoyagi’s results by constructing an asymptotically efficient equilibrium with continuous signal

²Often called “Bayesian incentive compatibility.”
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spaces, but with statistical independence and independent payoffs. All of the papers mentioned in
this paragraph use bid rotation schemes, an approach that does not extend to general games.³

In Miller (2007), I consider the same model as in the present paper, but add the restriction
that the equilibrium should be robust to the possibility that players may observe arbitrary, payoff-
irrelevant signals that are correlated with the payoff-relevant signals. I show that under this ro-
bustness restriction efficiency cannot be approximated by any PPE, and I characterize optimal
robust equilibria. In Athey and Miller (2007) we consider the setting of repeated trade under this
robustness restriction, with continuous signal spaces, but assuming statistical independence and
independent payoffs.

2 Themodel

The dynamic game consists of infinite repetitions of a stage game. N = {1, . . . , n} is the set of
players. The players share a common discount factor δ ∈ (0, 1).

At the beginning of each stage, each player i ∈ N observes a private signal drawn from the set
Θi, according to the common prior probability measure ϕ on Θ ≡ Θ1 × · · · × ΘN.⁴ I write ϑ for
the random variable distributed according to ϕ; θ is a typical realization. The players then send
simultaneous public messages; each player i’s message space isMi ⊃ Θi,⁵ withM ≡ M1 × · · · ×
MN. After the communication is concluded, each player i simultaneously chooses an action from
Xi, withX ≡ X1× · · ·×XN; all actions are publicly observed. Each player i receives a payoff from
the actions and signals; this is given by πi : Θ×X → R+, with π ≡ {π1, . . . , πN}. Assume that πi
is integrable and uniformly bounded for all i, and that there exists a perfect Bayesian equilibrium
in the stage game.

For part of this paper, I also allow the players to voluntarily “pay” utility to one another. I model
this by assuming that they have utility that is quasilinear in “money,” which is a continuous good
in zero net supply. Monetary payments are bilateral and unidirectional: each player can pay any
non-negative amount of money to each other player, and (for simplicity) such payments cannot be
refused by the recipient. All such payments are publicly observed. Player i’s utility in the stage game
is equal to her payoff plus any monetary payments she receives minus any monetary payments she
gives to other players.

³Several papers have investigated collusion in repeated auctions without communication, when the auctioneer
releases only the identity of the winner. Skrzypacz and Hopenhayn (2004) show that in such games efficiency cannot be
approximated by any PPE. Blume and Heidhues (2006) construct an equilibrium in private strategies that outperforms
any PPE. It is not yet known whether there exist asymptotically efficient equilibria in their setting.

⁴The measure ϕ is associated with a product topology that I do not specify. I assume that all functions
are measurable with respect to this topology; furthermore, I assume that the conditional probability measures{
{ϕ−i|i(·|θi)}θi∈Θi

}N
i=1 are well defined.

⁵More generally, since messages can be relabeled, what is actually required is that there exist a homeomorphism
fromΘi to a subspace ofMi. AssumingΘi ⊂ Mi simplifies the notation.
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This setup allows an arbitrary measurable signal space Θi for each player and statistical inter-
dependence among signals; it also allows each player’s payoffs to depend on the entire vector of
signals.

The equilibrium concept is perfect public equilibrium (PPE), after FLM, which is a refinement
of perfect Bayesian equilibrium in which players play behavior strategies that in each period are
conditioned only on the public history and their current private information. The public history
comprises the messages, actions, and payments that have transpired, which are common knowl-
edge. Since the mechanism design approach will simplify matters in the following section, I rele-
gate the definitions of strategies and equilibria to Appendix A.

3 Themechanism design approach

This section develops a “mechanism design approach” to repeated games with private informa-
tion. Abreu, Pearce, and Stacchetti (1986, 1990) showed that PPEs can be constructed recursively
without loss of generality with respect to attainable utilities. The recursive construction yields a dy-
namic program in which the future path of play is summarized by a profile of average continuation
utilities. I interpret this program as a recursive mechanism design problem.

This approach greatly simplifies the notation and analysis, but its validity must be proven. This
is accomplished in Theorem 1, which shows that if the players are sufficiently patient then this
approach yields (nearly) the same set of utilities that are attainable in PPE. Recursive mechanisms
and their properties are defined below; Theorem 1 is stated at the end of the section.

3.1 Recursive mechanisms

A stage mechanism consists of an outcome function x, a payment function t, and a continuation
reward function w.

Definition 1. A stage mechanism is a triplet ⟨x, t,w⟩ : Θ → X × RN × RN such that t and w are
integrable and

∑
i ti(θ) = 0 for all θ ∈ Θ.

In addition to a collection of stage mechanisms, a recursive mechanism also specifies a set V
of promised (average) utility state variables over which it is defined, as well as an initial condition
v0. Formally:

Definition 2. A recursive mechanism is a triplet ⟨V, {⟨x(·; v), t(·; v),w(·; v)⟩ : v ∈ V} , v0⟩, abbre-
viated as

⟨
V,
{
⟨x, t,w⟩(·; v)

}
, v0
⟩
, such that:

(i) V ⊂ RN,

(ii) {⟨x, t,w⟩ (·; v)} is a collection of stage mechanisms indexed by v ∈ V ,
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(iii) v0 ∈ V .

Such a mechanism is called “recursive” because in each period the stage mechanism is selected
based on the promised utility v carried over from the previous period, and the stage mechanism
generates a continuation reward w(·; v) that becomes the promised utility for the next period. In
contexts that do not invite confusion, I drop the (·; v) notation for clarity.

Given a signal profile θ ∈ Θ and a vector of announcements θ̂ ∈ Θ in a stage mechanism
⟨x, t,w⟩, each player’s total utility is her stage game utility plus the present value of her continuation
reward:

ui(θ, θ̂; δ, ⟨x, t,w⟩) ≡ πi(θ, x(θ̂)) + ti(θ̂) +
δ

1− δ
wi(θ̂). (1)

The space of promised utilities V must be feasible: the utilities that are promised must actually
be attainable in the game, and the mechanism must actually deliver what it promises.

Definition 3. With respect to δ ∈ (0, 1), a recursivemechanism
⟨
V,
{
⟨x, t,w⟩(·; v)

}
, v0
⟩
is feasible

if the following are satisfied:

(i) Attainability: V ⊂ co
({

v ∈ RN :
∑

i vi =
∑

i E [πi (θ, x(θ))] for some x : Θ → X
})

(where
co(·) is the convex hull operator);

(ii) Promise keeping: v = (1− δ)E [u(θ, θ; δ, ⟨x, t,w⟩ (·; v))] for all v ∈ V ;

(iii) Coherence: w (θ; v) ∈ V for all θ ∈ Θ and all v ∈ V .

3.2 The equivalent static mechanism

The following definition transforms the dynamic problem into an equivalent static problem.

Definition 4. A static mechanism is a pair ⟨x, y⟩ : Θ → X × RN such that y is integrable. Given
δ ∈ (0, 1) and a stage mechanism ⟨x, t,w⟩, the equivalent static mechanism is a static mechanism
⟨x, y⟩ such that y(θ) ≡ t(θ) + δ

1−δw(θ).

Accordingly, y is termed the equivalent static transfer function. Note that by construction any
equivalent static transfer function is integrable. Naturally, in a static mechanism players seek to
maximize πi(θ, x(θ̂)) + yi(θ̂).

Definition 5. A static transfer function y is ex post budget balanced (EPBB) if
∑

i yi(θ) = 0 for all
θ. A static mechanism ⟨x, y⟩ is EPBB if y is EPBB.

Definition 6. A static mechanism ⟨x, y⟩ is uniformly bounded if there exists a bound B < ∞ such
that

∣∣yi(θ)∣∣ < B for all θ ∈ Θ and all i ∈ N .
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3.3 Incentive compatibility

Incentive compatibility requires that each player must prefer to make a truthful announcement
rather than deviate to some other “on-schedule” announcement (that is, claiming to have observed
some other signal θ̂i ̸= θi, with θ̂i ∈ Θi.). Interim incentive compatibility (IIC) requires that
each player, taking interim expectations over the other players’ announcements, prefer to make a
truthful announcement rather than deviate to some other on-schedule announcement. IIC can be
thought of as incentive compatibility that applies when all announcements are made simultane-
ously.

Definition 7. With respect to a discount factor δ ∈ (0, 1), a stage mechanism ⟨x, t,w⟩ is interim
incentive compatible (IIC) if

E
[
ui(ϑ, ϑ; δ, ⟨x, t,w⟩)

∣∣ϑi = θi
]
≥ E

[
ui(ϑ, (θ̂i, ϑ−i); δ, ⟨x, t,w⟩)

∣∣ϑi = θi
]

(2)

for all θ̂i ∈ Θi, forϕi-almost all θi ∈ Θi, and for all i ∈ N . A recursivemechanism
⟨
V,
{
⟨x, t,w⟩(·; v)

}
,

v0
⟩
is IIC if ⟨x, t,w⟩ (·; v) is IIC for all v ∈ V . A static mechanism ⟨x, y⟩ is IIC if

E
[
πi(ϑ, x(ϑ)) + yi(ϑ)

∣∣ϑi = θi
]
≥ E

[
πi(ϑ, x(θ̂i, ϑ−i)) + yi(θ̂i, ϑ−i)

∣∣ϑi = θi
]

(3)

for all θ̂i ∈ Θi, for ϕi-almost all θi ∈ Θi, and for all i ∈ N .

Note that a stage mechanism is IIC if and only if its equivalent static mechanism is IIC.

3.4 Individual rationality

To support the recursive mechanism as an equilibrium, if a player is ever observed to deviate (an
“off-schedule” deviation), then he should be punished by switching to a PPE that gives him a low
payoff starting in the next period, rather than wi(θ). If the punishment outweighs his gain from
deviating, then it is “individually rational” for him not to choose an observable deviation.

Definition 8. With respect to a discount factor δ ∈ (0, 1), a punishment payoff profile is a payoff
profile p ∈ Rn such that for each player i there exists a PPE that yields a payoff profile p(i) ∈ Rn

with p(i)i = pi.

By Abreu, Pearce, and Stacchetti (1990) Theorem 6, if p is a punishment payoff profile with
respect to δ̂ < 1, then p is also a punishment payoff profile with respect to any δ ∈ [δ̂, 1].⁶

Definition 9. With respect to a discount factor δ ∈ (0, 1) and a punishment payoff profile p ∈ Rn,
a stage mechanism ⟨x, t,w⟩ is ex post individually rational (EPIR) if the following are satisfied for
all i ∈ N :

⁶Note that Abreu, Pearce, and Stacchetti (1990) Theorem 6 is stated in terms of total payoffs. Translating it to
average payoffs yields the claim.
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(i) for ϕi-almost all θi ∈ Θi,

E
[
ui
(
ϑ, ϑ; δ, ⟨x, t,w⟩

)∣∣ϑi = θi
]
≥ E

[
sup

χ∈X ∗(ϑ;i)
πi(ϑ, χ)

∣∣∣∣ϑi = θi

]
+

δ

1− δ
pi, (4)

whereX ∗(θ; i) is the set of action profiles that can arise in perfect Bayesian equilibrium in the
remainder of the stage game given θ, after player imakes an off-schedule announcement;⁷

(ii) for almost all θ ∈ Θ and all θ̂i ∈ Θi,

ui
(
θ, (θ̂i, θ−i); δ, ⟨x, t,w⟩

)
≥ sup

χi ̸=xi(θ̂i,θ−i)

πi
(
θ,
(
χi, x−i(θ̂i, θ−i)

))
+

δ

1− δ
pi; (5)

(iii) for almost all θ ∈ Θ,

ti(θ) + δE
[
ui
(
ϑ, ϑ; δ, ⟨x, t,w⟩

)]
≥ δ

1− δ
pi. (6)

A recursive mechanism
⟨
V,
{
⟨x, t,w⟩(·; v)

}
, v0
⟩
is EPIR if ⟨x, t,w⟩(·; v) is EPIR for all v ∈ V .

Eq. 4 ensures that player i’s expected utility, given his own signal θi, is at least what he could
get by choosing an off-schedule announcement, under strategies specifying that after he deviates
the other players would not pay him any money in that period. Eq. 5 ensures that, regardless of
whether his announcement in the communication phase was truthful, player i’s utility starting in
the action phase from playing as if in equilibrium is at least what he could get by choosing a deviant
action, also under strategies specifying that after he deviates the other players would not pay him
anymoney in that period. Eq. 6 ensures that once actions have been taken, player i prefers to make
his specified payment, rather than pay zero.⁸

EPIR is helpful for justifying the mechanism design approach, but for the purpose of proving
the folk theorem it is stronger than necessary. Since payoffs are uniformly bounded, if the punish-
ment payoffs are strictly less than the equilibrium payoffs, then there will always be some discount
factor such that the stage mechanism satisfies EPIR. This motivates a simpler notion of individual
rationality.

Definition 10. With respect to a payoff profile p ∈ Rn, a payoff profile v ∈ Rn is strictly in-
dividually rational (SIR) if mini∈N {vi − pi} > 0. A set of payoff profiles V ⊂ Rn is SIR if
infv∈V mini∈N {vi − pi} > 0.

⁷For simplicity, we can take X ∗(θ; i) to be the set of equilibria given θ when the other players have passive beliefs
after observing player i’s off-schedule announcement.

⁸Without loss of generality, strategies can be constrained to specify that player i is supposed to pay money to any
other player(s) only if ti(θ) < 0.

9



When utility is transferable, there is the possibility that even if a mechanism violates the SIR
constraint for player i, the other players’ SIR constraints may be slack. Then a money payment
to player i from players with slack constraints can yield a new mechanism that satisfies SIR and
implements the same outcome function x. An outcome function is thus “potentially IR” if there
exists an SIR mechanism that implements it.

Definition 11. With respect to a payoff profile p ∈ Rn, a static mechanism ⟨x, y⟩ is potentially
individually rational (PIR) if

∑
i E [πi(ϑ, x(ϑ))] >

∑
i pi for all i ∈ N . An outcome function x is

PIR there exists a static transfer functiony such that ⟨x, y⟩ is PIR.

3.5 Justifying the mechanism design approach

The following theorem justifies the mechanism design approach to repeated games with private
information. The proof, in Appendix B, is conceptually simple. When the players select their re-
cursive mechanism (this selection is not modeled), they are collectively acting as their own mech-
anism designer. Their recursive mechanism specifies the equilibrium path they should follow;
incentive compatibility discourages on-schedule deviations while the trigger punishment discour-
ages off-schedule deviations. Hence a feasible, IIC, and EPIR recursive mechanism describes an
equilibrium path and implies the existence of a PPE that supports that path. In the other direction,
the equilibriumpath of any SIR PPE can be described by a history-dependent dynamicmechanism.
Similarly to the logic of Abreu, Pearce, and Stacchetti (1986, 1990), it is without loss of generality
with respect to attainable payoffs to substitute a recursive mechanism for a dynamic mechanism.

Theorem 1. Given a payoff profile p ∈ Rn,

(i) for any δ ∈ (0, 1), if p is a punishment payoff profile and a recursivemechanism
⟨
V,
{
⟨x, t,w⟩(·; v)

}
,

v0
⟩
is feasible, IIC, and EPIR, then there exists a PPE that yields the same announcements,

actions, and net payments along the equilibrium path;

(ii) if V ⊂ RN is the set of average utility profiles yielded at the beginning of any period along
the equilibrium path of some PPE, V is SIR with respect to p, and there exists δ̂ ∈ (0, 1) with
respect to which p is a punishment payoff profile, then there exists δ ∈ [δ̂, 1) such that for any
δ ∈ (δ, 1) and any v ∈ V there exists a recursive mechanism with initial promised utility v
that is feasible, IIC, and EPIR.

4 Budget balanced static mechanisms

Leave aside for a moment the repeated game structure, and consider the problem of designing
static mechanisms that satisfy both IIC and EPBB. It is widely known that in many situations ef-
ficient IIC static mechanisms can be implemented with EPBB if IR constraints are ignored (see,
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e.g., d’Aspremont and Gérard-Varet 1979; Johnson, Pratt, and Zeckhauser 1990; and Fudenberg,
Levine, and Maskin 1995). Most generally, ACGVb showed that, in games with finite type spaces,
any IIC-implementable outcome function can be implemented with EPBB if and only if their “Con-
dition C” is satisfied.

Definition 12. A game satisfies Condition C if, for λ = (1, . . . , 1), any function R : Θ → R can be
expressed as R(θ) =

∑
i λiri(θ), where r : Θ → RN satisfies

E
[
ri(ϑ)

∣∣ϑi = θi
]
≥ E

[
ri(θ̂i, ϑ−i)

∣∣ϑi = θi
]

(7)

for ϕi-almost all θi ∈ Θi, for all θ̂i in the support of ϕi, and for all i ∈ N .

Lemma 1 (ACGVb). If Condition C is satisfied and the staticmechanism ⟨x, y⟩ is IIC and uniformly
bounded, then there exists a static mechanism ⟨x, yλ⟩ that is IIC, uniformly bounded, and satisfies
EPBB.

The only implicit requirement for this conclusion is that the conditional expectations of the
transfer function are well-defined almost everywhere, which is assured by the assumption that
⟨x, y⟩ is IIC.

Remark 1 (Statistical independence). When θ1, . . . , θN are statistically independent according to
ϕ, the conclusion of Lemma 1 is always satisfied. To see this, given an IIC and uniformly bounded
mechanism ⟨x, y⟩, let

ŷi(θ) = E
[
yi(ϑ)

∣∣ϑi = θi
]
− 1

(N− 1)
∑
j ̸=i

E
[
yj(ϑ)

∣∣ϑj = θj
]
. (8)

Then ⟨x, ŷ⟩ is uniformly bounded and satisfies
∑

i yλi (θ) = 0 for all θ ∈ Θ and for all i ∈ N . It is
also IIC, since the second term does not depend on θi while the first term satisfies

E
[
πi(ϑ, x(θ̂i, ϑ−i)) + yi(θ̂i, ϑ−i)

∣∣ϑi = θi
]

= E
[
πi(ϑ, x(θ̂i, ϑ−i)) + E

[
yi(θ̂i, ϑ−i)

∣∣ϑi = θ̂i
]∣∣∣ϑi = θi

] (9)

for all θi ∈ Θi, for all θ̂i ∈ Θi, and for all i ∈ N .

Furthermore, for N ≥ 3 ACGVb prove, in a model with finite Θ, that Condition C is satisfied
for an open and dense set of probability distributions. Unfortunately their method of proof rests
crucially on finiteness, so it is an open question whether Condition C is satisfied generically for
infinite Θ.
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5 Folk theorem for games with transfers

I now return to the repeated game context to prove the folk theorem with monetary payments,
using grim trigger punishments for off-schedule deviations. The theorem shows that the problem
of finding a PPE with an individually rational payoff profile can essentially be solved by finding a
static mechanism that is IIC and uniformly bounded, and whose outcome function provides the
desired sum of payoffs.

Theorem 2 (Folk theorem with money). For any payoff profile p ∈ Rn, suppose that (i) the static
mechanism ⟨x, y⟩ is IIC and uniformly bounded; (ii) ⟨x, y⟩ is PIR; (iii) either ⟨x, y⟩ is EPBB or Con-
dition C is satisfied; and (iv) there exists δ̂ ∈ (0, 1) such that p is a punishment payoff profile. Then
for any payoff profile v0 ∈ Rn that is SIR and satisfies

∑
i v0i =

∑
i E
[
πi(ϑ, x(ϑ))

]
, there exists

δ ∈ (δ̂, 1) such that, for all δ > δ, there exists a stationary PPE that yields a payoff profile of v0.

Proof. Themechanism I construct is stationary on the equilibrium path; i.e., it uses the same stage
mechanism in every period, or ⟨x̄, t̄, w̄⟩(·; v) = ⟨x, t,w⟩ for all v.

Suppose that Condition C is satisfied, and the mechanism ⟨x, y⟩ is IIC, PIR, and uniformly
bounded. By Lemma 1, ⟨x, y⟩ is also EPBB without loss of generality. Suppose that v0 satisfies SIR
and

∑
i v0i =

∑
i E
[
πi(ϑ, x(ϑ))

]
. Let v̂ ≡ E

[
π(x(ϑ)) + y(ϑ)

]
.

I begin by constructing the stage mechanism ⟨x, t,w⟩ and establishing that it satisfies IIC. For
all θ, let ti(θ) = yi(θ)+v0i − v̂i and wi(θ) = v0i . As required, the monetary payments are uniformly
bounded and sum to zero for all θ, because ⟨x, y⟩ is EPBB and uniformly bounded, and

∑
i(v0i −

v̂i) = 0. Observe that ⟨x, t,w⟩ satisfies IIC, since its equivalent static mechanism differs from ⟨x, y⟩
by only a lump sum.

Next I show that the recursive mechanism is feasible. Since w(θ) = v0 for all θ, the recursive
mechanism is

⟨
{v0}, ⟨x̄, t̄, w̄⟩(·; v), v0

⟩
. Observe that the attainability and coherence conditions

for feasibility are satisfied by construction. The promise keeping condition for feasibility is also
satisfied:

(1− δ)E
[
u(ϑ, ϑ; δ, ⟨x, t,w⟩)

]
= (1− δ)E

[
v̂+ v0 − v̂+ δ

1− δ
v0
]
= v0. (10)

For EPIR, sufficient conditions are that for all i, θ, and θ̂i,

v0i ≥ pi +
1− δ

δ
E
[

sup
χ∈X ∗(ϑ;i)

πi(ϑ, χ)− πi
(
ϑ, x(ϑ)

)
− ti(ϑ)

∣∣∣∣ϑi = θi

]
, (11)

v0i ≥ pi +
1− δ

δ

(
sup

χi ̸=xi(θ̂i,θ−i)

πi
(
θ,
(
χi, x−i(θ̂i, θ−i)

))
− πi

(
θ, x(θ̂i, θ−i)

)
− ti(θ̂i, θ−i)

)
, (12)

v0i ≥ pi +
1− δ

δ
ti(θ). (13)
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These are satisfied for sufficiently high δ < 1 because v0i > pi and ⟨x, y⟩ is uniformly bounded. Let
δ be the minimal δ such that Eqs. 11–13 are satisfied for all i.

Finally, by Theorem 1, for any δ ∈ (δ, 1) there exists a PPE that yields the same messages,
actions, and net payments along the equilibrium path, and hence yields a payoff profile of v0. ■

6 Conclusion

This paper proves a folk theorems for games with private information, communication, and mon-
etary transfers. Based on the work of Abreu, Pearce, and Stacchetti (1986, 1990), FLM, Athey
and Bagwell (2001), and others, I adapt static mechanism design definitions and techniques to
the analysis of repeated game equilibria. This mechanism design approach not only simplifies
the description of equilibria, but also leads to a simpler and more broadly applicable extension of
FLM,Theorem 8.1. Rather than adapt results from games with hidden action, where the statistical
identifiability of actions is of serious concern, it is simpler to note that, under Condition C, IIC-
implementability implies enforceability with respect to the relevant. This direct approach allows
the folk theorem to be extended to games with interdependent signals, interdependent payoffs,
and arbitrary signal spaces.

The notions of IIC and EPIR that I employ are “almost sure” in the sense of Balder (1996).
It is not necessary to impose stronger conditions under the assumption (heretofore maintained
implicitly) that there exists some perfect Bayesian equilibrium in the continuation game after any
event that some θ ∈ Θ is realized on which IIC or IR fails for some player. This is consistent with
the construction of a perfect Bayesian equilibrium in the repeated game because failures of EPIR
or IIC occur with zero probability, and so affect neither interim incentives nor the value of the
recursive mechanism.

Appendix A Equilibrium
This section provides the notation necessary to describe strategies and equilibria. A public outcome in
period τ is hτ ∈ M × X×(RN−1

+ )N, while a private outcome for player i is hτi ≡ (θi, hτ ). A pure stage
strategy for player i is a triplet si = ⟨m̂i, x̂i, t̂i⟩ that contains a reporting rule m̂i : Θi → Mi, an action rule
x̂i : Θi ×M → Xi, and a payment rule t̂i : Θi ×M× X → RN−1

+ , with t̂i,j(θi, µ, χ) ∈ R+ indicating the
amount that player i pays to player j. A pure stage strategy profile is a vector s ≡ (s1, . . . , sN), or, equivalently,
s ≡ ⟨m̂, x̂, t̂⟩. The public history at the end of period τ isHτ ≡ (h1, . . . , hτ ), and the private history for player
i is Hτ

i ≡ (h1i , . . . , hτi ); H0 and H0
i are null histories. A “stage-behavior” strategy for player i is a function σi

that maps player i’s private history (of any length) to a probability distribution over pure stage strategies.⁹
For convenience, I allow players to choose their stage strategies using an arbitrary public randomization

⁹Strictly speaking, a behavior strategy would specify a probability distribution over reports as a function of private
type, a probability distribution over actions as a function of private type and message vector, and so on. Stage-behavior
strategies are both more convenient and more general.
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device, so that (indulging in some abuse of notation) σ({Hτ−1
i }Ni=1) need not be statistically independent.

Given a stage-behavior strategy profile σ and a set of private histories {Hτ−1
i }Ni=1, the ex post stage game

payoff for player i in period τ is

π̂i(θi;σ({Hτ−1
i }Ni=1)) = π(θ, x̂(θ, m̂(θ))) +

∑
j ̸=i

t̂j,i
(
θj, m̂(θ), x̂(θ, m̂(θ))

)
−
∑
j ̸=i

t̂i,j
(
θj, m̂(θ), x̂(θ, m̂(θ))

)
,

(14)

where the understanding is that ⟨m̂, x̂, t̂⟩ is the outcome of the randomization specified by the stage strategy
σ({Hτ−1

i }Ni=1). A public strategy for player i is a stage-behavior strategy such that σi(Hτ−1
i ) = σi(H̃τ−1

i )

whenever Hτ−1 = H̃τ−1; i.e., a strategy in which player i ignores her private history. When σi is a public
strategy, I write σi(Hτ−1) for simplicity. In the repeated game, given a profile of stage-behavior strategies σ,
the value to player i of the private history Hτ

i is

v̂i(Hτ
i ;σ) = (1− δ)E

[ ∞∑
τ̃=τ+1

δτ̃−1π̂i(ϑ
τ̃
i ;σ({Hτ̃−1

i }Ni=1))

∣∣∣∣∣Hτ
i

]
, (15)

where ϑτ̃
i is player i’s private signal in period τ̃ .

Definition 13. A perfect public equilibrium, or PPE, is a public strategy profile σ such that v̂i(Hτ
i ;σ) ≥

v̂i(Hτ
i ; (σ

′
i , σ−i)) for all strategies σ′

i , for all private histories Hτ
i , and for all i.

Appendix B Justifying the mechanism design approach
Proof of Theorem 1 (page 10). To prove part (i), suppose that given δ,G =

⟨
V,
{
⟨x, t,w⟩(·; v)

}
, v0
⟩
is a feasi-

ble, IIC, and EPIR recursive mechanism with respect to a punishment payoff profile p. Construct a strategy
profile σ as follows.

First, consider any public history Hτ that contains an off-schedule deviation with respect to G. Since p
is a punishment payoff profile, there exists a PPE s∗ in the stage game that yields an expected average payoff
of p; select this equilibrium.

Next, consider any public history Hτ that contains no off-schedule deviations with respect to G. Let
{σi(·;Hτ )}Ni=1 specify a pure public strategy profile such that, for all i ∈ N and all j = 2, . . . ,N− 1,

m̂i(θi;Hτ ) = θi, (16)
x̂i(θi, θ;Hτ ) = xi(θ; v(Hτ ;σ)), (17)

t̂1,2
(
θ1, θ, x̂i(θi, θ;Hτ );Hτ

)
= −t1(θ; v(Hτ ;σ)), (18)

t̂j,j+1
(
θj, θ, x̂i(θi, θ;Hτ );Hτ

)
= −tj(θ; v(Hτ ;σ)) + t̂j−1,j

(
θj−1, θ, x̂i(θi, θ;Hτ );Hτ

)
, (19)

with t̂i,j
(
θi, θ, x̂i(θi, θ;Hτ );Hτ

)
= 0 for any (i, j) ∈ N ×N not specified above.

In addition, for any consistent beliefs following the realization of any message profile µ /∈ Θ, choose
t̂(θ, µ, x̂(θ, µ;Hτ );Hτ ) = (0, . . . , 0) and choose x̂(θ, µ;Hτ

i ) so as to constitute a perfect Bayesian equilib-
rium in the remainder of the stage game (assume that such an equilibrium exists); and for any consistent
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beliefs following the realization of anyχ ̸= x̂(θ, µ;Hτ ), choose t̂(θ, µ, χ;Hτ ) = (0, . . . , 0) so as to constitute
a perfect Bayesian equilibrium in the remainder of the stage game.

This strategy profile yields an equilibrium path equivalent to that of G by construction, and it yields a
PPE in every subgame after off-schedule deviations by construction as well. Since G is EPIR with respect
to p, no off-schedule deviation is profitable. On-schedule deviations are also unprofitable, becauseG is IIC.
Every subgame after an on-schedule deviation is followed by a subgame that is equivalent to an equilibrium
path subgame. Since the proposed strategies do not depend on private histories, they form a PPE in the
repeated game.

For part (ii), define a dynamic mechanism Γ = {⟨x, t⟩(·;Hτ )} as a collection of pairs ⟨x, t⟩ indexed by
Hτ . Let v(Hτ ) be the vector of average utilities provided by Γ in the continuation game after history Hτ .
Given δ ∈ (0, 1), I say that Γ is EPIR and IIC with respect to a punishment payoff profile p if the stage
mechanism

⟨
x(·;Hτ ), t(·;Hτ ),E

[
v(Hτ+1)

∣∣·;Hτ
]⟩

is EPIR and IIC with respect to p for all equilibrium path
public histories Hτ .

Suppose that σ = {⟨m̂, x̂, t̂⟩(·;Hτ )} is a pure strategy PPE, and V is the set of average utility profiles
yielded at the beginning of any period along its equilibrium path. Suppose that V is SIR with respect to p,
and there exists δ̂ ∈ (0, 1) with respect to which p is a punishment payoff profile.

Fix 0 < ε < infv∈V mini∈N {vi − pi}; such ε exists because V is SIR with respect to p. I begin by
showing that there exists an IIC dynamic mechanism Γ that yields the same announcements, actions, and
net payments as σ on the equilibrium path. Consider any public historyHτ on the equilibrium path. For all
i ∈ N , let

xi(θ;Hτ ) = x̂i(θi, m̂(θ;Hτ );Hτ ), (20)

ti(θ;Hτ ) =
∑
j ̸=i

t̂j,i
(
θj, m̂(θ;Hτ ), x(θ;Hτ );Hτ

)
−
∑
j ̸=i

t̂i,j
(
θi, m̂(θ;Hτ ), x(θ;Hτ );Hτ

)
. (21)

Although Γ is equivalent to σ in terms of equilibrium path actions and net payments, the players may
have additional information at the time they choose actions and payments in any period, since true signals
are announced publicly. Nevertheless, since both π and t̂ are uniformly bounded by some D < ∞,¹⁰ if
δ > D

D+ε then no off-schedule deviation is profitable, so Γ is EPIR with respect to p. Since the same actions,
net payments, and continuation rewards result from truthful announcements as under σ, no on-schedule
deviation is profitable, so Γ is IIC. This argument extends in a natural way to mixed strategy PPEs, using
randomized dynamic mechanisms.

Next I show that there exists a recursive mechanism ⟨V, {⟨x, t,w⟩ (·; v)} , v0⟩ that is feasible, IIC, and
EPIR with respect to p, such that v0 = v̂(H0). Note that for each equilibrium path public history Hτ , the
portion ofΓ that applies followingHτ is itself an IIC and EPIR dynamicmechanism. Thus the promised util-
ity v̂(Hτ ) is supported by a range of continuation rewards generated by dynamic mechanisms; let w(·;Hτ )

be the mapping from announcements to continuation rewards. For each ṽ ∈ V , select from among the his-
tories {Hτ : v̂(Hτ ) = ṽ} an arbitrary history, and call itH∗(ṽ). Then construct a recursive mechanismG by
setting ⟨x, t,w⟩(·; v) =

⟨
x(·;H∗(v)), t(·;H∗(v)),w(·;H∗(v))

⟩
for all v ∈ V and setting v0 = v̂(H0). G is IIC

and EPIR with respect to p because, for each v ∈ V , it specifies an action function, payment function, and

¹⁰If t̂ were not uniformly bounded, then it would be a profitable deviation for some player to refuse to make his
specified payment.
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continuation reward function that offer incentives that are identical to the incentives offered by some dy-
namic mechanism drawn from an equilibrium path subgame of Γ. Finally,G is feasible by construction. ■
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