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Abstract

In a repeated principal-agent problem in which the agent has private information about her
i.i.d. cost of effort (à la Levin 2003), we analyze relational contracts that the parties can rene-
gotiate in a way that respects their relative bargaining power. We show that if a disagreement
arises in a state in which she was to be rewarded, then it is optimal for the agent to destroy
surplus, exerting costly effort to hurt the principal. In such an event, her counter-productive
effort is optimally constant regardless of her effort cost, the principal does not fire her, and
both parties anticipate agreeing to reward the agent in the next period. In contrast, on the
equilibrium path as well as under disagreement in a state in which the agent was to be pun-
ished, the agent exerts productive effort that is decreasing in her effort cost.
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1 Introduction

If the agent in a principal-agent relationship has private information about the returns to effort,
then—even if effort is fully contractible and can be externally enforced—the parties must employ
“relational” incentives to self-enforce their activities. In a celebrated paper, Levin (2003) showed
how to construct optimal relational contracts with hidden information, demonstrating that such
contracts are stationary and satisfy a basic notion of renegotiation proofness.

In this paper we consider the samemodel, but apply a solution concept for relational contracts,
contractual equilibrium (Miller and Watson 2013), that allows the parties to renegotiate in a way
that recognizes their relative bargaining power. We show that the optimal relational contract, while
stationary on the equilibrium path, enforces surplus-destroying, counter-productive behavior at
some histories off the equilibrium path. Specifically, the agent is called upon to destroy surplus
when both (1) the principal and the agent fail to reach agreement while attempting to renegotiate,
and (2) the agent has been promised a high payoff due to past efforts. When destroying surplus,
the agent optimally exerts the same counter-productive effort regardless of her current effort cost.
This contrasts to the equilibrium path, whereon her productive effort schedule, as a function of
her effort cost, is typically partially separating.

Destroying surplus is costly to both the principal and the agent—envision a worker picketing
in front of her employer’s storefront, but not being fired—but it serves an important function. By
reducing payoffs under disagreement, such counterproductive effort increases the gains to agree-
ment, and it shifts the disagreement point in a way that disadvantages the principal relative to
the agent. Counterproductive effort, and the concomitant shift in the agent’s bargaining position,
occurs only after a disagreement in a state of the world in which the agent is supposed to be re-
warded. When the agent is being punished, she is supposed to exert the same effort regardless of
whether she and the principal reach agreement, so there is no surplus to bargain over. The optimal
contract thereby maximizes the difference between the agent’s agreement payoff in reward states
versus punishment states, providing the highest-powered incentives on the equilibrium path.

Since off-path surplus-destroying behavior creates incentives through the channel of the agent’s
bargaining power, the principal ex ante prefers an intermediate level of bargaining power. Our in-
terpretation is that at the outset of the relationship, though the principal may initially possess all
the bargaining power, he would like to “sell” some bargaining power to the agent in exchange for
a lower starting wage. Whether bargaining power can really be sold depends on the institutional
environment. For instance, labor laws may govern the bargaining process; even if not, the parties
may still be able to write certain forms of arbitration into their formal contract.

Typically, the agent’s optimal effort schedule along the equilibriumpath is partially separating—
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it is better for her to exert more effort when it is less costly to do so, if the incentive power is avail-
able to enforce partial separation. In contrast, when the agent is to be rewarded but an off-path
disagreement arises, it is optimal for the agent’s counter-productive effort to be insensitive to her
effort cost. Intuitively, the point of destroying surplus off path is to improve the agent’s best bar-
gaining outcome. Unfortunately, since she cannot receive more than her maximum continuation
reward, while increasing the variance in her information rent from separating might enable her
to destroy more surplus on average, it would also decrease her expected continuation value. If
there is no separation among her types, then they can all earn the maximum continuation reward,
increasing her disagreement payoff at the expense of the principal.

In this model, we show that a contractual equilibrium is the solution to a fixed point prob-
lem relating two continuous optimal control problems. The first of these problems, representing
the agent’s equilibrium-path effort schedule, has one control and two states, and is similar to the
problem analyzed by Levin (2003). The second of these problems, representing the agent’s coun-
terproductive effort schedule under disagreement in her reward state, has one control and four
states, and is substantially more complex. Nonetheless, we are able to show that the solution to
the second problem cannot be partially separating. At this time we are unable to rule out the pos-
sibility of full separation, but we can show that any fully separating effort schedule must be the
solution to an overdetermined system of equations. Hence we strongly conjecture that only full
pooling can arise; i.e., all agent types select the same level of counterproductive effort.

Our analysis and conclusions differ from those of Levin (2003) because of our different choice
of equilibrium refinement. Levin finds an optimal perfect public equilibrium subject to the rene-
gotiation proofness notion of “strong optimality,” which requires that expected payoffs at the start
of each periodmust always be on the Pareto frontier of what is attainable in any equilibrium. Levin
constructs these equilibria by requiring a player who deviates to give all the surplus to the other
player. Specifically, if either player deviates in the bargaining phase (e.g., the principal makes a
deviant offer or the agent rejects the equilibrium offer), then they take their outside options for
one period and then continue by giving all the surplus to the player who did not deviate. It follows
that in such an equilibrium the entire economic surplus can be used to provide incentives for the
agent. “Strongly optimal” equilibria do not entertain the possibility of bargaining power, since the
net surplus at stake in the bargaining phase (one period of optimal production if they agree mi-
nus one period of outside options if they disagree) is allocated endogenously as a function of the
history rather than according to a bargaining protocol.¹

In contrast, contractual equilibrium assumes that bargaining power is fixed exogenously—e.g.,

¹For concreteness, Levin assumes that the principal makes a take-it-or-leave-it offer, but notes that this privilege
confers no bargaining power, and that his results would not change if the agent instead got to make the offers.
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via the bargaining protocol that the parties must follow when negotiating. Because the principal
retains his bargaining power evenwhen the agent is being rewarded, not all the surplus can be used
to incentivize the agent. Contractual equilibrium also imposes no ad hoc constraints on behavior
under disagreement. Instead, it allows the parties to plan their behavior under potential future
disagreements so as to maximize the agent’s incentives under agreement. Surplus destruction
under disagreement in the agent’s reward states improves matters by increasing the fraction of the
equilibrium-path surplus that can be devoted to the agent’s incentives.

Miller and Watson (2013) briefly analyzed a simpler principal-agent relationship with moral
hazard, also based on amodel fromLevin (2003). They showed that in themoral hazard setting the
agent’s incentives are increasing in her bargaining power; we extend that conclusion to the more
challenging setting of hidden information. They also showed that if counterproductive agent ef-
fort is formally contractible and legally enforceable, then the optimal formal contract monetarily
rewards the agent for engaging in counterproductive effort. Here we demonstrate that counter-
productive effort need not be legally enforceable to be helpful.

2 Themodel

A principal P and an agent A interact in a repeated game, in discrete time with an infinite horizon.
They share a common discount factor δ ∈ (0, 1). The stage game has the following extensive form
structure within any period t:

1. First, the principal and the agent engage in bargaining, which we describe later when in-
troducing contractual equilibrium. The bargaining process is parameterized by the parties’
bargaining powers: πA ∈ [0, 1] for the agent, and πP = 1−πA for the principal. The outcome
of the bargaining process is either “disagreement” with nomonetary transfer, or “agreement”
with an immediate monetary transfer and an informal contract specifying a strategy profile
for continuation play.

2. Before continuing, either party can unilaterally opt to terminate the relationship perma-
nently (i.e., the principal can opt to fire the agent, and the agent can opt to quit). If either
party terminates the relationship, then both parties receive their outside options in the cur-
rent and all future periods.

3. Next, the agent privately observes her cost type θ, which is drawn i.i.d. (i.e., regardless of the
history) from a probability distribution represented by a PDF ϕ on Θ ≡ [θ, θ].
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4. If neither party terminated the relationship, the agent chooses her effort e ∈ R+. Her cost
of effort is c(e, θ).²

5. Given her effort, the agent decides how much revenue y should accrue to the principal. The
revenue must satisfy −b(e) ≤ y ≤ g(e); that is, g and b define a production possibilities
frontier in the product space of costs to the agent and revenues to the principal.

Other than the agent’s type θ, all other actions and outcomes are observed by both parties. If
neither player terminates the relationship, the stage game payoffs are uA = τ − c(e, θ) for the
agent and uP = −τ + y for the principal, where τ is the net monetary payment from the principal
to the agent in the bargaining phase. If either player terminates the relationship, the stage game
payoffs in that period are uA = τ + uA and uP = −τ + uP, and then in all future periods they
receive constant per-period payoffs of uA and uP.

Remark 1. Although our assumptions on the timing of monetary transfers differ from those of
Levin (2003), the two models are essentially equivalent in this regard. Levin assumes that the
agreement at the start of the period specifies a legally enforced “fixed salary” that the principalmust
pay at the end of the period, but this is identical to paying immediately upon agreement. Similarly,
Levin assumes that the parties may pay each other voluntary non-negative “bonuses” at the end
of the period. Parties do not want to renege on these bonus payments because a reneger faces a
punishment at the start of the next period. So no substantive change is imposed by assuming that
the bonus payment is delayed until the start of the next period: although the monetary amount
of the payment must be increased by 1/δ, the punishment that enforces it can be implemented
immediately, rather than with delay, and is therefore strengthened by the same factor.

We make the following standard assumptions on the primitives (see Levin 2003):

Assumption 1. The functions c, g, b, and ϕ satisfy the following:

1. The cost function c is smooth, with c(0, θ) = 0.

2. For all e ∈ (0,∞) and all θ ∈ (θ, θ), ce(e, θ) > 0, cee(e, θ) > 0, cθ(e, θ) ≥ 0, ceθ(e, θ) > 0,
ceθe(e, θ) ≥ 0, and ceθθ(e, θ) ≥ 0.

3. The production frontier functions g and b are smooth, with g(0) = b(0) = 0.

4. For all e ∈ (0,∞), ge(e) > 0, gee(e) < 0, be(e) > 0, and bee(e) < 0.

5. For each θ ∈ Θ, g(e)− c(e, θ) has an interior maximizer eFB(θ) ∈ (0,∞).

²Levin assumes effort is bounded, but in light of his assumption that first best effort is interior, the bound is not
substantive.
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6. The distribution of types has full support on Θ.

We also make the following additional assumption on combinations of primitives:

Assumption 2. For all e ∈ (0,∞) and all θ ∈ (θ, θ),

1. ∂
∂θ

(
ge(e)− ce(e, θ)

)
ϕ(θ) < 0, and

2. ∂
∂θ

(
be(e) + ce(e, θ)

)
ϕ(θ) > 0.

The first part of this assumption is weaker than Levin’s assumption that the cumulative distri-
bution of types is concave; the second part is mathematically similar but prevents the cumulative
distribution from being “too concave” in the context of c and b. As an example, given Assump-
tion 1, Assumption 2 is satisfied if the distribution of types is uniform, or, in the context of c, b,
and g, not “too far” from uniform.

Finally, we make the following restrictive third derivative assumption:

Assumption 3. For all e ∈ (0,∞) and all θ ∈ (θ, θ), ceθθ(e, θ) = 0.

This assumption is used only in Lemma 2, where we use it in combination with Assumption 2
to rule out the possibility of partial separation when the agent engages in surplus destruction. The
proof of Lemma 2makes clear that this is not a knife-edge conclusion; in the context of any given b
and ϕ, it is substantially stronger than needed. What is needed is that ceθ not increase in θ too fast
relative to

(
be+ce

)
ϕ. Unfortunately, what would constitute “too fast” is endogenously determined,

so it is difficult to propose an appropriate weakening of this assumption.

3 The optimal relational contract

Miller and Watson (2013) show that a contractual equilibrium strategy profile in a two-player
game is, without loss of generality, defined by behavior in and transitions among agreement and
disagreement in both in the agent’s reward state (H) and punishment state (L). Such a strategy
profile constitutes a contractual equilibrium if it maximizes the parties’ welfare in the agreement
states, subject to:

• the agent’s incentive compatibility—choosing the right effort and the right revenue as a func-
tion of her type;

• both parties’ individual rationality—never strictly preferring to terminate the relationship;

• and the bargaining operator—splitting the difference in welfare between agreement and dis-
agreement in proportion to their bargaining powers.
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Though the bargaining operator embodies the “cooperative” notion of Nash bargaining, Miller
and Watson (2013) proved that this hybrid approach in which a cooperative bargaining stage is
embedded in an otherwise noncooperative game is equivalent to a fully non-cooperative approach
with cheap-talk bargaining, under several equilibrium selection axioms on the interpretation of
cheap-talk messages. Justified by their results, in this paper we exclusively employ the hybrid
approach.

We can make three simplifications immediately, without loss. First, since the agent can freely
choose any revenue y ∈ [−b(e), g(e)], incentive compatibility of her revenue choice conditional
on her effort choice is trivially guaranteed by simply transitioning to her punishment state for
any violation. Second, under agreement the agent’s revenue choice conditional on her effort must
always be y = g(e)—otherwise she could increase welfare by simply choosing higher revenue,
without any change in incentive provision. Third, the agent’s effort as a function of her type must
be identical in both states under agreement—otherwise welfare would not be maximized on the
equilibrium path.

For now, we assert that the following additional simplifications are also without loss, with proof
deferred to a later draft of the paper.

• Disagreement behavior in the agent’s state L is identical to agreement behavior in state L.

• Under both agreement and disagreement in state L, the agent’s expected utility (in average
terms) is equal to uA.

• Under disagreement in state H, the agent chooses revenue y = −b(e).

• In each state, under both agreement and disagreement, the agent’s continuation reward
function—which in principle determines her continuation utility as a function of both her
effort and the revenue she selects—is measurable with respect to her effort.

With these simplifications, it remains to identify only the agent’s “good” effort schedule eG : Θ →
R+ (under agreement in either state, and under disagreement in state L), her “bad” effort schedule
eB : Θ → R+ (under disagreement in stateH), and the continuation reward functions wG : R+ →
R and wB : R+ → R that enforce them. The effort schedules eG and eB generate (good) surplus
and bad surplus, respectively:

S(eG) ≡
∫
Θ

(
g(eG(θ))− c(eG(θ), θ)

)
ϕ(θ) dθ, (1)

S(eB) ≡
∫
Θ

(
−b(eB(θ))− c(eB(θ), θ)

)
ϕ(θ) dθ, (2)
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Figure 1

We can now establish the geometry of the contractual equilibrium in utility space, as shown
in Figure 1. In Figure 1, vectors zH and zL are the endpoints of the contractual equilibrium set
that reward and punish the agent, respectively. The payoff vector zH is attained when the parties
negotiate in state H, knowing that if they fail to agree then the agent will work to her bad effort
schedule eB, and then in the next period she will get a continuation reward of wB(θ). Therefore
the disagreement payoff vector in state H is

dH = (1− δ)E
(
−c(eB(θ)),−b(eB(θ))

)
+ δE

(
wB(θ), S(eG)− wB(θ)

)
, (3)

which implies that the agent’s payoff under agreement is

zHA = dHA + πA(S(eG)− dHA − dHP )
= (1− δ)

(
−E(c(eB(θ))) + πA(S(eG)− S(eB))

)
+ δE

(
wB(θ)

) (4)

(where the second equality arises from substituting in Eq. (3)). Observe that dHmustweakly Pareto
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dominate (uA, uP); otherwise one party or the other would prefer to terminate the relationship if
they ever disagreed in state H. Since this constraint may not bind, it is shown as slack in Figure 1.

When the parties negotiate in state L, they understand that if they fail to agree then the agent
will work to her good effort schedule eG, and she will get a continuation reward of wG(θ) that is
calibrated to deliver her expected utility of exactly uA. Therefore their disagreement payoff vector
in state L is

dL = zL = (1− δ)E
(
−c(eG(θ)), g(eG(θ))

)
+ δE

(
wG(θ), S(eG)− wG(θ)

)
. (5)

A contractual equilibrium is identified with the solution to:

Problem 1.

max
eG,eB,wG,wB

S(eG) (6)

subject to eG(θ) ≥ 0 and eB(θ) ≥ 0 for all θ, incentive compatibility,

ICG: eG(θ) ∈ argmax
e

−(1− δ) c(e, θ) + δwG(e) for all θ, (7)

ICB: eB(θ) ∈ argmax
e

−(1− δ) c(e, θ) + δwB(e) for all θ; (8)

individual rationality under disagreement in state H,

IRAH∗: dHA ≥ uA, (9)
IRPH∗: dHP ≥ uP; (10)

individual rationality under disagreement in state L (note that individual rationality in either state
under disagreement implies individual rationality in that state under agreement),

IRAL∗: dLA ≥ uA, (11)
IRPL∗: dLP ≥ uP; (12)
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and bargaining self generation,

BSGG: wG(e) ∈
[
zLA, zHA

]
for all e, (13)

BSGB: wB(e) ∈
[
zLA, zHA

]
for all e. (14)

Our main result is that under general conditions an optimal relational contract features a fully
pooling bad effort schedule, and a fully pooling or partially separating good effort schedule.

Theorem 1 (Mostly proven). Under Assumptions 1 to 3, there exists a solution to Problem 1 such
that eB(θ) = êB for all θ ∈ Θ, where êB ≥ 0. For an open set of parameters under these assumptions,
also êB > 0 and eG(θ) = max{eRG(θ), êG}, where eRG is strictly decreasing, êG > 0, and max{θ :

eG(θ) = êG} > θ.

The rest of this draft mostly proves this theorem, though there are a few loose ends to be tied
up. Based on Fig. 1, we also claim that welfare is increasing in πA, and that zHP is quasiconcave in
πA, with a strictly interior maximum. Proof of these claims awaits a later draft.

4 Analysis

4.1 Simplification

Now we convert Problem 1 to a simpler problem. First, each IC constraint is satisfied if and only if
appropriate envelope and monotonicity conditions are satisfied. In addition, increasing the “span”
zHA − zLA of continuation values allows the agent to be given higher powered incentives, so among
optimal equilibria there will always exist one that maximizes this span subject to the other con-
straints. It follows that without loss of generality, wB and wG can be optimally selected to set

max
e

wB(e) = wB(eB(θ)) = zHA , (15)

min
e

wG(e) = wG(0) = zLA = dLA = uA, (16)

δwG(eG(θ))− (1− δ)c(eG(θ), θ) = δwG(0); (17)

i.e., BSGB binds at the top, BSGG binds at the bottom, IRAL binds, and ICG binds for type θ
contemplating a deviation to e = 0. Moreover, we have already imposed wG(0) = uA, which
implies binding IRAL. Finally, observe that IRPL is implied by IRPH.Therefore we have simplified
Problem 1 to:
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Problem 2.

max
eG,eB,wG,wB

S(eG) (18)

subject to the envelope and monotonicity versions of incentive compatibility

ECG: δ

1− δ
wG(eG(θ)) = δ

1− δ
uA + c(eG(θ), θ) +

∫ θ

θ
cθ(eG(s), s) ds, (19)

MG: eG(θ) is nonincreasing and eG(θ) ≥ 0, (20)

ECB: δ

1− δ
wB(eB(θ)) = δ

1− δ
zHA + c(eB(θ), θ)− c(eB(θ), θ)−

∫ θ

θ
cθ(eB(s), s) ds, (21)

ICB(0): δ

1− δ
wB(eB(θ)) ≥ δ

1− δ
wB(0) + c(eB(θ), θ), (22)

MB: eB(θ) is nonincreasing and eB(θ) ≥ 0; (23)

individual rationality in state H

IRAH∗∗: δ

1− δ
EwB(eB(θ)) ≥ 1

1− δ
uA + Ec(eB(θ)), (24)

IRPH∗∗: δ

1− δ

(
S(eG)− EwB(eB(θ))

)
≥ 1

1− δ
uP + Eb(eB(θ)); (25)

and simplified self-generation constraints

SG: wG(eG(θ)) ≤ zHA , wG(0) = uA, (26)
SB: wB(eB(θ)) = zHA , wB(0) ≥ uA. (27)

Next we take steps to eliminate wB and wG from the optimization problem. Evaluating ECG
at θ and combining with SG yields the equivalent “dynamic enforcement” constraint (Levin 2003)
ICDEG, below; similarly evaluating ECB at θ and combiningwith SB and ICB(0) yields the dynamic
enforcement constraint ICDEB. Finally, it is now evident that the maximum surplus is attained if
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the maximum span is attained, so it suffices to maximize zHA rather than S(eG). We rewrite zHA as:

zHA(eG, eB) = (1− δ)
(
−E(c(eB(θ))) + πA(S(eG)− S(eB))

)
δzHA(eG, eB) + (1− δ)

(
E(c(eB(θ)))− c(eB(θ), θ)− E

∫ θ

θ
cθ(eB(s), s) ds

)
= πA(S(eG)− S(eB))− c(eB(θ), θ)− E

∫ θ

θ
cθ(eB(s), s) ds,

(28)

where the first equality arises from taking expectations of ECB and substituting into Eq. (4)). Now
we have a consolidated and simplified “Main” Problem that is equivalent to Problems 1 and 2.

Problem 3 (Main Problem).

max
eG,eB

zHA(eG, eB) (29)

subject to the dynamic enforcement constraints

ICDEG: δ

1− δ

(
zHA(eG, eB)− uA

)
≥ c(eG(θ), θ) +

∫ θ

θ
cθ(eG(s), s) ds, (30)

ICDEB: δ

1− δ

(
zHA(eG, eB)− uA

)
≥ c(eB(θ), θ) +

∫ θ

θ
cθ(eB(s), s) ds; (31)

the monotonicity constraints

MG: eG(θ) is nonincreasing and eG(θ) ≥ 0, (32)
MB: eB(θ) is nonincreasing and eB(θ) ≥ 0; (33)

and individual rationality constraints

IRAH: δ

1− δ

(
zHA(eG, eB)− uA

)
≥ c(eB(θ), θ) + E

∫ θ

θ
cθ(eB(s), s) ds+ uA, (34)

IRPH:

δ

1− δ
zHA + Ec(eB(θ), θ)− c(eB(θ), θ)− E

∫ θ

θ
cθ(eB(s), s) ds

≤ δ

1− δ
S(eG)− 1

1− δ
uP − Eb(eB(θ)).

(35)

Because the problem is convex, in any optimal contract each effort schedule (eB and eG) is
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optimal when the other is held fixed. Since the objective and all the constraints are additively
separable in the two effort schedules, this enables us to break the optimization problem into two
smaller problems, one for each effort schedule.

Problem 4 (“Good” Problem).

max
eG

zHA(eG, eB) (36)

for some fixed eB, subject to

ICDEG: δ

1− δ

(
zHA(eG, eB)− uA

)
≥ c(eG(θ), θ) +

∫ θ

θ
cθ(eG(θ), θ) dθ, (37)

MG: eG(θ) is nonincreasing and eG(θ) ≥ 0. (38)

Problem 5 (“Bad” Problem).

max
eB

zHA(eG, eB) (39)

for some fixed eG, subject to

ICDEB: δ

1− δ

(
zHA(eG, eB)− uA

)
≥ c(eB(θ), θ) +

∫ θ

θ
cθ(eB(s), s) ds; (40)

MB: eB(θ) is nonincreasing and eB(θ) ≥ 0; (41)

IRAH: δ

1− δ

(
zHA(eG, eB)− uA

)
≥ c(eB(θ), θ) + E

∫ θ

θ
cθ(eB(s), s) ds+ uA, (42)

IRPH:

δ

1− δ
zHA + Ec(eB(θ), θ)− c(eB(θ), θ)− E

∫ θ

θ
cθ(eB(s), s) ds

≤ δ

1− δ
S(eG)− 1

1− δ
uP − Eb(eB(θ)).

(43)

Let eG∗(eB) be the solution to Problem 4, and eB∗
(
eG
)
be the solution to Problem 5. Then we

find the solution to Problem 1 at a fixed point (eG, eB) =
(
eG∗

(eB), eB∗(eG)
)
.

4.2 Solution to the Good Problem

Following Levin (2003), we express Problem 4 as an optimal control problem in θ, with eG(θ) as
a state and γ(θ) = ėG(θ) as the control. We are interested only in cases in which the solution
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is for the agent to put in non-zero effort, so we ignore the non-negativity constraint on effort
during optimization, and then simply note that the constraint is satisfied at the solution. Since
the ICDEG constraint involves a definite integral over the state space, we introduce an auxiliary
state K(θ), such that ICDEG can be expressed in terms of K(θ). Now we substitute for zHA(eG, eB)
to transform Problem 4 into an optimal control problem in standard form, for a given bad effort
schedule eB.

Problem 6 (Good Problem in Standard Form).

max
eG(θ)


πA

∫ θ

θ

(
g(eG(θ))− c(eG(θ), θ)

)
ϕ(θ) dθ

− πAS(eB)− c(eB(θ), θ)−
∫ θ

θ
ϕ(θ)

∫ θ

θ
cθ(eB(s), s) ds dθ

 (44)

subject to

˙eG(θ) = γG(θ), (45)

K̇G(θ) =
δ

1− δ
πA
(
g(eG(θ))− c(eG(θ), θ)

)
ϕ(θ)− cθ(eG(θ), θ), (46)

− γG(θ) ≥ 0, (47)
KG(θ) = 0, θ = θL, θ = θH, (48)

KG(θ)− c(eG(θ), θ)− δ

1− δ
uA

− δ

1− δ

(
πAS(eB) + c(eB(θ), θ) +

∫ θ

θ
ϕ(θ)

∫ θ

θ
cθ(eB(s), s) ds dθ

)
≥ 0,

(49)

with co-state variables ηG(θ), and λ(θ) for the states eG(θ) and KG(θ) respectively, and multipliers
νG(θ), (µG1 , µG2 , µG3 ), and µG for the equality and inequality constraints Eqs. (47) to (49), respec-
tively.

The good problem is quite similar to the optimization problem studied by Levin (2003), differ-
ing mainly in the presence of the coefficient πA and the constant terms involving eB. Accordingly,
we reach similar conclusions, proven in Appendix A: If ICDEG does not bind, fully-separating first
best is attainable; if ICDEG does bind, then theremay be either partial pooling (with separation for
high types) or full pooling. Our analysis will hinge on µG, the multiplier for the ICDEG constraint.

If δ and πA are sufficiently large, uA is sufficiently small, and eB is such that the term in paren-

14



theses on the second line of Eq. (49) is sufficiently large (recall that S(eB) is negative), then ICDEG
will be slack. If so, it suffices to maximize zHA(eG, eB) subject to the monotonicity constraint MG.
Because first-best effort eFB is decreasing, it both maximizes zHA and satisfies monotonicity.

If instead ICDEG binds, there can either be full pooling or partial pooling. First consider full
pooling. In this case matters are simple. Let eG(θ) = êG for all θ. Simply solve for êG from the
binding ICDEG constraint.

The other possibility is partial pooling. In this case there exists a cutoff type θ̂ ∈ (θ, θ) and
strictly decreasing function eRG : Θ → R+ such that high-cost types θ > θ̂ separate by exerting
effort eRG(θ)while low-cost types θ ≤ θ̂ exert pooling effort eRG(θ̂). In particular, eRG is the unique
solution to

(
ge(e(θ))− ce(e(θ), θ)

)
ϕ(θ) =

µGceθ(e(θ), θ)
πA
(
1+ µG δ

1−δ

) . (50)

Under our assumptions, eRG is strictly decreasing, and eRG(θ) < eFB(θ) for all θ. To find the cutoff
type θ̂, observe that νG(θ) = µGce(eG(θ), θ) and νG(θ̂) = 0. If we integrate Eq. (169) from θ to θ̂
and apply the boundary conditions, we have:

∫ θ̂

θ

(
ge(eG(θ))− ce(eG(θ), θ)

)
ϕ(θ) dθ = µGce(eG(θ̂), θ̂)

πA
(
1+ µG δ

1−δ

) . (51)

From the assumptions in the primitives, there is at most one θ̂ ∈ (θ, θ) that satisfies this condition.

4.3 Solution to the Bad Problem

With the extra constraints (IRAH and IRPH), Problem 5 is a more complex optimal control prob-
lem than Problem 4. We first substitute for zHA , which Problem 5 maximizes, as follows:³

zHA(eG, eB) = πA
(
S(eG)− S(eB)

)
− c(eB(θ), θ)−

∫ θ

θ
ϕ(θ)

∫ θ

θ
cθ(eB(s), s) ds dθ

=

∫ θ

θ

(
πA
(
b(eB(θ)) + c(eB(θ), θ)

)
ϕ(θ)− cθ(eB(θ), θ)(1− Φ(θ))

)
dθ

− c(eB(θ), θ) + πAS(eG)

(52)

³Observe that
∫ θ

θ
ϕ(θ)

∫ θ

θ
cθ(eB(s), s) ds dθ =

∫ θ

θ
cθ(eB(θ), θ)

∫ θ

θ
ϕ(s) ds dθ.
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With the objective in this form, it is evident that if there were no constraints then the optimal
counter-productive effort of the most costly types (for whom 1 − Φ(θ) = 0) would be infinite.
Therefore even if ICDEB, IRAH, and IRPH do not bind, it must be that MB binds. That is, in the
bad problem there is no analog of the strictly decreasing first best solution to the good problem.

4.3.1 Constructing the additional state variables

To express the constraints in appropriate form for analysis, we define three state variables in ad-
dition to eB(θ): KB(θ) for the ICDEB constraint, L(θ) for the IRAH constraint, and M(θ) for the
IRPH constraint. We rewrite ICDEB as

δ

1− δ

(
zHA(eG, eB)− uA

)
≥ c(eB(θ), θ) +

∫ θ

θ
cθ(eB(θ), θ) dθ

⇐⇒ KB(θ) +
δ

1− δ

(
πAS(eG)− uA

)
− 1

1− δ
c(eB(θ), θ) ≥ 0,

(53)

where

KB(θ) ≡
∫ θ

θ

 δ

1− δ

πA
(
b(eB(θ̃)) + c(eB(θ̃), θ̃)

)
ϕ(θ̃)

− cθ(eB(θ̃), θ̃)(1− Φ(θ̃))

− cθ(eB(θ̃), θ̃)

 dθ̃. (54)

We rewrite IRAH as

δ

1− δ

(
zHA(eG, eB)− uA

)
≥ c(eB(θ), θ) +

∫ θ

θ
cθ(eB(θ), θ)(1− Φ(θ)) dθ + uA

⇐⇒ L(θ) + δ

1− δ
πAS(eG)−

1
1− δ

(
c(eB(θ), θ) + uA

)
≥ 0

(55)

where

L(θ) ≡ 1
1− δ

∫ θ

θ

(
δπA

(
b(eB(θ̃)) + c(eB(θ̃), θ̃)

)
ϕ(θ̃)− cθ(eB(θ̃), θ̃)(1− Φ(θ̃))

)
dθ̃. (56)
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We rewrite IRPH as

δ

1− δ
zHA(eG, eB) +

∫ θ

θ
c(eB(θ), θ)ϕ(θ) dθ − c(eB(θ), θ)−

∫ θ

θ
cθ(eB(θ), θ)(1− Φ(θ)) dθ

≤ δ

1− δ
S(eG)− 1

1− δ
uP −

∫ θ

θ
b(eB(θ))ϕ(θ) dθ

⇐⇒ −M(θ) +
δ

1− δ
(1− πA)S(eG) +

1
1− δ

(
c(eB(θ), θ)− uP

)
≥ 0,

(57)

where

M(θ) ≡
∫ θ

θ


(
δπA
1− δ

+ 1
)(

b(eB(θ̃)) + c(eB(θ̃), θ̃)
)
ϕ(θ̃)

− 1
1− δ

cθ(eB(θ̃), θ̃)(1− Φ(θ̃))

 dθ̃. (58)

4.3.2 Characterization

Now we can express Problem 5 in standard form (Léonard and van Long 1992, Problem 7.114–
7.115), and derive the necessary conditions for an optimum.

Problem 7 (Bad Problem in Standard Form).

max
eB


∫ θ

θ

(
πA
(
b(eB(θ)) + c(eB(θ), θ)

)
ϕ(θ)− cθ(eB(θ), θ)(1− Φ(θ))

)
dθ

− c(eB(θ), θ) + πAS(eG)

 (59)
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subject to

ėB(θ) = γB(θ) (60)

K̇B(θ) =
δ

1− δ

(
πA
(
b(eB(θ)) + c(eB(θ), θ)

)
ϕ(θ)− cθ(eB(θ), θ)(1− Φ(θ))

)
− cθ(eB(θ), θ) (61)

L̇(θ) = 1
1− δ

(
δπA

(
b(eB(θ)) + c(eB(θ), θ)

)
ϕ(θ)− cθ(eB(θ), θ)(1− Φ(θ))

)
(62)

Ṁ(θ) =

(
δπA
1− δ

+ 1
)(

b(eB(θ)) + c(eB(θ), θ)
)
ϕ(θ)− 1

1− δ
cθ(eB(θ), θ)(1− Φ(θ)) (63)

− γB(θ) ≥ 0 (64)
eB(θ) ≥ 0 (65)
KB(θ) = 0, L(θ) = 0, M(θ) = 0, θ = θL, and θ = θH (66)

KB(θ) +
δ

1− δ

(
πAS(eG)− uA

)
− 1

1− δ
c(eB(θ), θ) ≥ 0 (67)

L(θ) + δ

1− δ
πAS(eG)−

1
1− δ

(
c(eB(θ), θ) + uA

)
≥ 0 (68)

−M(θ) +
δ(1− πA)S(eG)

1− δ
+

1
1− δ

(
c(eB(θ), θ)− uP

)
≥ 0 (69)

with co-state variables ηB(θ), λ1(θ), λ2(θ), and λ3(θ) for the states eB(θ), KB(θ), L(θ), and M(θ),
respectively; and multipliers νB(θ), µB0 , (µB1 , µB2 , µB3 , µ4, µ5), µB, ξ, and ζ for the equality and in-
equality constraints Eqs. (64) to (69), respectively.
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Necessary conditions The Hamiltonian for this problem is:

HB(θ) = πA
(
b(eB(θ)) + c(eB(θ), θ)

)
ϕ(θ)− cθ(eB(θ), θ)(1− Φ(θ)) + ηB(θ)γB(θ)

+ λ1(θ)

(
δ

1− δ

(
πA
(
b(eB(θ)) + c(eB(θ), θ)

)
ϕ(θ)−cθ(eB(θ), θ)(1− Φ(θ))

)
− cθ(eB(θ), θ)

)
+ λ2(θ)

(
δ

1− δ
πA
(
b(eB(θ)) + c(eB(θ), θ)

)
ϕ(θ)− 1

1− δ
cθ(eB(θ), θ)(1− Φ(θ))

)
+ λ3(θ)

((
δπA
1− δ

+ 1
)(

b(eB(θ)) + c(eB(θ), θ)
)
ϕ(θ)− 1

1− δ
cθ(eB(θ), θ)(1− Φ(θ))

)
=

(
πA +

δπA
1− δ

(λ1(θ) + λ2(θ)) + λ3(θ)

(
δπA
1− δ

+ 1
))(

b(eB(θ)) + c(eB(θ), θ))
)
ϕ(θ)

−
((

1+ λ1(θ)
δ

1− δ
+

1
1− δ

(λ2(θ) + λ3(θ))

)
(1− Φ(θ)) + λ1(θ)

)
cθ(eB(θ), θ)

+ ηB(θ)γB(θ),
(70)

and the Lagrangean is

LB = HB − νB(θ)γB(θ). (71)

By Theorem 6.5.1 of Léonard and van Long 1992), the necessary conditions for a solution to
Problem 7 are as follows.

1. There exists a piecewise-continuous multiplier νB(θ) such that, for all θ,

∂L∗

∂γB(θ)
= ηB(θ)− νB(θ) = 0, (72)

νB(θ) ≥ 0, −γB(θ) ≥ 0, νB(θ)γB(θ) = 0. (73)

2. The co-state variables ηB(θ), λ1(θ), λ2(θ), and λ3(θ) are continuous, and have piecewise-
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continuous derivatives satisfying the following conditions:

η̇B(θ) = − ∂LB

∂eB(θ)

= −
(
πA +

δπA
1− δ

(λ1(θ) + λ2(θ)) + λ3(θ)

(
δπA
1− δ

+ 1
))(

be(eB(θ)) + ce(eB(θ), θ))
)
ϕ(θ)

+

((
1+ λ1(θ)

δ

1− δ
+

1
1− δ

(λ2(θ) + λ3(θ))

)
(1− Φ(θ)) + λ1(θ)

)
ceθ(eB(θ), θ)

(74)

λ̇1(θ) = − ∂LB∗

∂KB(θ)
= −HB

K = 0 (75)

λ̇2(θ) = − ∂LB∗

∂L(θ) = −HB
L = 0 (76)

λ̇3(θ) = − ∂LB∗

∂M(θ)
= −HB

M = 0 (77)

3. The state transitions satisfy

ėB(θ) = γB(θ) (78)

K̇B(θ) =
δ

1− δ

(
πA
(
b(eB(θ)) + c(eB(θ), θ)

)
ϕ(θ)− cθ(eB(θ), θ)(1− Φ(θ))

)
− cθ(eB(θ), θ)

(79)

L̇(θ) = 1
1− δ

(
δπA

(
b(eB(θ)) + c(eB(θ), θ)

)
ϕ(θ)− cθ(eB(θ), θ)(1− Φ(θ))

)
(80)

Ṁ(θ) =

(
δπA
1− δ

+ 1
)(

b(eB(θ)) + c(eB(θ), θ)
)
ϕ(θ)− 1

1− δ
cθ(eB(θ), θ)(1− Φ(θ)) (81)

4. TheLagrangeanLB(eB(θ)∗,KB(θ)∗, L(θ)∗,M(θ)∗, ηB(θ), λ1(θ), λ2(θ), λ3(θ), νB(θ), θ) = ψB(θ)

is a continuous function of θ. On each interval of continuity of γB∗(θ),ψB(θ) is differentiable,
and ψB′

(θ) ≡ dLB∗
dθ = ∂LB∗

∂θ .

5. The transversality conditions are satisfied:
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(a)

HB(θ)− µB1
∂KB(θ)

∂θ
− µB2

∂L(θ)
∂θ

− µB3
∂M(θ)

∂θ
− µ4

∂(θ − θL)

∂θ
− µ5

∂(θ − θH)

∂θ

− µB
∂

∂θ

(
KB(θ) +

δ

1− δ

(
πAS(eG)− uA

)
− 1

1− δ
c(eB(θ), θ)

)
− ξ

∂

∂θ

(
L(θ) + δ

1− δ
πAS(eG)−

1
1− δ

(
c(eB(θ), θ) + uA

))
− ζ

∂

∂θ

(
−M(θ) +

δ(1− πA)S(eG)
1− δ

+
1

1− δ

(
c(eB(θ), θ)− uP

))
= 0

(82)

⇒ HB(θ)− µ4 +
1

1− δ
cθ(eB(θ), θ)(µB + ξ − ζ) = 0 (83)

(b)

ηB(θ) + µB1
∂KB(θ)

∂e(θ) + µB2
∂L(θ)
∂e(θ) + µB3

∂M(θ)

∂e(θ) + µ4
∂(θ − θL)

∂e(θ) + µ5
∂(θ − θH)

∂e(θ)

+ µB
∂

∂e(θ)

(
KB(θ) +

δ

1− δ

(
πAS(eG)− uA

)
− 1

1− δ
c(eB(θ), θ)

)
+ ξ

∂

∂e(θ)

(
L(θ) + δ

1− δ
πAS(eG)−

1
1− δ

(
c(eB(θ), θ) + uA

))
+ ζ

∂

∂e(θ)

(
−M(θ) +

δ(1− πA)S(eG)
1− δ

+
1

1− δ

(
c(eB(θ), θ)− uP

))
= 0

(84)

⇒ ηB(θ)− 1
1− δ

ce(eB(θ), θ)(µB + ξ − ζ) = 0 (85)

(c)

λ1(θ) + µB1
∂KB(θ)

∂KB(θ)
+ µB2

∂L(θ)
∂KB(θ)

+ µB3
∂M(θ)

∂KB(θ)
+ µ4

∂(θ − θL)

∂KB(θ)
+ µ5

∂(θ − θH)

∂KB(θ)

+ µB
∂

∂KB(θ)

(
KB(θ) +

δ

1− δ

(
πAS(eG)− uA

)
− 1

1− δ
c(eB(θ), θ)

)
+ ξ

∂

∂KB(θ)

(
L(θ) + δ

1− δ
πAS(eG)−

1
1− δ

(
c(eB(θ), θ) + uA

))
+ ζ

∂

∂KB(θ)

(
−M(θ) +

δ(1− πA)S(eG)
1− δ

+
1

1− δ
c(eB(θ), θ)− 1

1− δ
uP

)
= 0

(86)

⇒ λ1(θ) + µB1 = 0 (87)
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(d) Similarly, λ2(θ) + µB2 = 0, and

(e) λ3(θ) + µB3 = 0

(f )

HB(θ) + µB1
∂KB(θ)

∂θ
+ µB2

∂L(θ)
∂θ

+ µB3
∂M(θ)

∂θ
+ µ4

∂(θ − θL)

∂θ
+ µ5

∂(θ − θH)

∂θ

+ µB
∂

∂θ

(
KB(θ) +

δ

1− δ

(
πAS(eG)− uA

)
− 1

1− δ
c(eB(θ), θ)

)
+ ξ

∂

∂θ

(
L(θ) + δ

1− δ
πAS(eG)−

1
1− δ

(
c(eB(θ), θ) + uA

))
+ ζ

∂

∂θ

(
−M(θ) +

δ(1− πA)S(eG)
1− δ

+
1

1− δ

(
c(eB(θ), θ)− uP

))
= 0

(88)

⇒ HB(θ) + µ5 = 0 (89)

(g)

ηB(θ)− µB1
∂KB(θ)

∂e(θ)
− µB2

∂L(θ)
∂e(θ)

− µB3
∂M(θ)

∂e(θ)
− µ4

∂(θ − θL)

∂e(θ)
− µ5

∂(θ − θH)

∂e(θ)

− µB
∂

∂e(θ)

(
KB(θ) +

δ

1− δ

(
πAS(eG)− uA

)
− 1

1− δ
c(eB(θ), θ)

)
− ξ

∂

∂e(θ)

(
L(θ) + δ

1− δ
πAS(eG)−

1
1− δ

(
c(eB(θ), θ) + uA

))
− ζ

∂

∂e(θ)

(
−M(θ) +

δ(1− πA)S(eG)
1− δ

+
1

1− δ
c(eB(θ), θ)− 1

1− δ
uP

)
= 0

(90)

⇒ ηB(θ) = 0 (91)
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(h)

λ1(θ)− µB1
∂KB(θ)

∂KB(θ)
− µB2

∂L(θ)
∂KB(θ)

− µB3
∂M(θ)

∂KB(θ)
− µ4

∂(θ − θL)

∂KB(θ)
− µ5

∂(θ − θH)

∂KB(θ)

− µB
∂

∂KB(θ)

(
KB(θ) +

δ

1− δ

(
πAS(eG)− uA

)
− 1

1− δ
c(eB(θ), θ)

)
− ξ

∂

∂KB(θ)

(
L(θ) + δ

1− δ
πAS(eG)−

1
1− δ

(
c(eB(θ), θ) + uA

))
− ζ

∂

∂KB(θ)

(
−M(θ) +

δ(1− πA)S(eG)
1− δ

+
1

1− δ
c(eB(θ), θ)− 1

1− δ
uP

)
= 0

(92)

⇒ λ1(θ)− µB = 0 (93)

(i) Similarly,

λ2(θ)− ξ = 0 (94)

(j) , and

λ3(θ) + ζ = 0. (95)

6. The multipliers must have the following properties:

(a) For the equality boundary constraints, µB1 , µB2 , µB3 , µ4, µ5 are constants, and

KB(θ) = 0, L(θ) = 0,M(θ) = 0, θ = θL, and θ = θH (96)

23



(b) For the inequality boundary constraints, µB, ξ, ζ are constants, and

µB ≥ 0 (97)

KB(θ) +
δ

1− δ

(
πAS(eG)− uA

)
− 1

1− δ
c(eB(θ), θ) ≥ 0 (98)

µB
(
KB(θ) +

δ

1− δ

(
πAS(eG)− uA

)
− 1

1− δ
c(eB(θ), θ)

)
= 0 (99)

ξ ≥ 0 (100)

L(θ) + δ

1− δ
πAS(eG)−

1
1− δ

(
c(eB(θ), θ) + uA

)
≥ 0 (101)

ξ

(
L(θ) + δ

1− δ
πAS(eG)−

1
1− δ

(
c(eB(θ), θ) + uA

))
= 0 (102)

ζ ≥ 0 (103)

−M(θ) +
δ(1− πA)S(eG)

1− δ
+

1
1− δ

(
c(eB(θ), θ)− uP

)
≥ 0 (104)

ζ

(
−M(θ) +

δ(1− πA)S(eG)
1− δ

+
1

1− δ

(
c(eB(θ), θ)− uP

))
= 0 (105)

4.3.3 Observations

1.

λ̇1(θ) = 0 ∀θ from Eq. (75), and λ1(θ) = µB from Eq. (93) (106)
λ̇2(θ) = 0 ∀θ from Eq. (76), and λ2(θ) = ξ from Eq. (94) (107)

λ̇3(θ) = 0 ∀θ from Eq. (77), and λ3(θ) = −ζ from Eq. (95) (108)
Hence, λ1(θ) = µB ∀θ, λ2(θ) = ξ ∀θ, λ3(θ) = −ζ ∀θ (109)

2.

ηB(θ) = νB(θ) ∀θ from Eq. (72) ⇒ η̇B(θ) = v̇B(θ) ∀θ (110)

3. Substitute for ηB(θ), and λ1(θ), λ2(θ), λ3(θ) in the remaining conditions as follows:

(a) From Eq. (73):

νB(θ) ≥ 0, − γB(θ) ≥ 0, and νB(θ)γB(θ) = 0 (111)
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(b) From Eq. (74):

v̇B(θ) = −
(
πA +

δπA
1− δ

(
µB + ξ

)
− ζ

(
δπA
1− δ

+ 1
))(

be(eB(θ)) + ce(eB(θ), θ)
)
ϕ(θ)

+

((
1+ µB

δ

1− δ
+

1
1− δ

(ξ − ζ)

)
(1− Φ(θ)) + µB

)
ceθ(eB(θ), θ)

(112)

⇒
(
be(eB(θ)) + ce(eB(θ), θ)

)
ϕ(θ)

=

((
1+ 1

1−δ (µ
B + ξ − ζ)

)
(1− Φ(θ)) + µBΦ(θ)

)
ceθ(eB(θ), θ)− ν̇B(θ)

πA + δπA
1−δ (µ

B + ξ − ζ)− ζ

(113)

(c) From Eq. (78):

ėB(θ) = γB(θ) (114)

(d) From Eq. (79):

K̇B(θ) =
δ

1− δ

(
πA
(
b(eB(θ)) + c(eB(θ), θ)

)
ϕ(θ)− cθ(eB(θ), θ)(1− Φ(θ))

)
− cθ(eB(θ), θ)

(115)

(e) From Eq. (80):

L̇(θ) = 1
1− δ

(
δπA

(
b(eB(θ)) + c(eB(θ), θ)

)
ϕ(θ)− cθ(eB(θ), θ)(1− Φ(θ))

)
(116)

(f ) From Eq. (81):

Ṁ(θ) =

(
δπA
1− δ

+ 1
)(

b(eB(θ), θ) + c(eB(θ), θ)
)
ϕ(θ)− 1

1− δ
cθ(eB(θ), θ)(1− Φ(θ))

(117)

(g) From Eq. (83):

HB(θ)− µ4 +
1

1− δ
(µB + ξ − ζ)cθ(eB(θ), θ) = 0 (118)

(h) From Eq. (87):

µB + µB1 = 0 (119)
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and similarly, ξ + µB2 = 0, and −ζ + µB3 = 0.

(i) From Eq. (85):

νB(θ) =
1

1− δ
(µB + ξ − ζ)ce(eB(θ), θ) (120)

(j) From Eq. (89):

HB(θ) + µ5 = 0 (121)

(k) From Eq. (91):

νB(θ) = 0 (122)

(l) The properties of multipliers are the same.

4.3.4 Analysis of the bad effort schedule

Observe that µB1 , µB2 , µB3 , µ4, and µ5 each appears in only one equation, so the rest of the system can
be solved without them. These multipliers, corresponding to the boundary constraints of KB(θ),
L(θ),M(θ), θ, and θ, respectively, are uninteresting, so we do not solve for them. Hence, the set of
equations we will use to solve for the bad effort schedule will be the following:
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νB(θ) ≥ 0 (123)
ėB(θ) ≤ 0 (124)
νB(θ)ėB(θ) = 0 (125)(
be(eB(θ)) + ce(eB(θ), θ)

)
ϕ(θ)

=

((
1+ 1

1−δ (µ
B + ξ − ζ)

)
(1− Φ(θ)) + µBΦ(θ)

)
ceθ(eB(θ), θ)− ν̇B(θ)

πA + δπA
1−δ (µ

B + ξ − ζ)− ζ

(126)

µB ≥ 0 (127)

KB(θ) +
δ

1− δ

(
πAS(eG)− uA

)
− 1

1− δ
c(eB(θ), θ) ≥ 0 (128)

µB
(
KB(θ) +

δ

1− δ

(
πAS(eG)− uA

)
− 1

1− δ
c(eB(θ), θ)

)
= 0 (129)

ξ ≥ 0 (130)

L(θ) + δ

1− δ
πAS(eG)−

1
1− δ

(
c(eB(θ), θ) + uA

)
≥ 0 (131)

ξ

(
L(θ) + δ

1− δ
πAS(eG)−

1
1− δ

(
c(eB(θ), θ) + uA

))
= 0 (132)

ζ ≥ 0 (133)

−M(θ) +
δ(1− πA)S(eG)

1− δ
+

1
1− δ

(
c(eB(θ), θ)− uP

)
≥ 0 (134)

ζ

(
−M(θ) +

δ(1− πA)S(eG)
1− δ

+
1

1− δ

(
c(eB(θ), θ)− uP

))
= 0 (135)

νB(θ) =
1

1− δ
(µB + ξ − ζ)ce(eB(θ), θ) (136)

νB(θ) = 0 (137)

Lemma 1. µB + ξ − ζ ≥ 0, πA + δπA
1−δ

(
µB + ξ − ζ

)
− ζ > 0, and 1+ 1

1−δ (µ
B + ξ − ζ)− µB > 0.

Proof. First, since νB(θ) ≥ 0 for all θ, Eq. (136) and Assumption 1 imply that µB + ξ − ζ ≥ 0.
Since the lefthand side of Eq. (126) is finite for all θ, the righthand side denominator cannot

be zero. Next we show by contradiction that the righthand side denominator is not negative.
Assumption 1 implies that the first term in the numerator of the righthand side of Eq. (126) is
non-negative. Since the lefthand side of Eq. (126) is strictly positive for all θ, for the righthand
side denominator to be strictly negative, it must be that ν̇B(θ) > 0 for all θ. But by Eq. (137),
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∫ θ
θ ν̇

B(θ) dθ = 0− νB(θ) ≤ 0, a contradiction.
Finally, observe that 1 − πA + 1−δπA

1−δ (µB + ξ − ζ) − (µB + ξ − ζ) + ξ ≥ 0; adding this to
πA + δπA

1−δ

(
µB + ξ − ζ

)
− ζ ≥ 0, already established, yields the third fact.

Next we show that the optimal bad effort schedule is either fully pooling or fully separating.

Lemma 2. At the solution, either eB(θ) = ê for all θ or ėB(θ) < 0 for all θ.

Proof. First, solve Eq. (126) for ν̇B:

ν̇B(θ) =

((
1+ 1

1− δ
(µB + ξ − ζ)

)
(1− Φ(θ)) + µBΦ(θ)

)
ceθ(eB(θ), θ)

−
(
πA +

δπA
1− δ

(
µB + ξ − ζ

)
− ζ

)(
be(eB(θ)) + ce(eB(θ), θ)

)
ϕ(θ)

(138)

Now consider any pooling region, in which eB(θ) = ê; therein

ν̈B(θ) =

((
1+ 1

1− δ
(µB + ξ − ζ)

)
(1− Φ(θ)) + µBΦ(θ)

)
ceθθ(ê, θ)

+

(
−1− 1

1− δ
(µB + ξ − ζ) + µB

)
ϕ(θ)ceθ(ê, θ)

−
(
πA +

δπA
1− δ

(
µB + ξ − ζ

)
− ζ

)
∂

∂θ
(be(ê) + ce(ê, θ))ϕ(θ).

(139)

By Assumption 3, the first line on the righthand side is zero. By Lemma 1, Assumption 1, and
Assumption 2 the second and third lines are strictly negative. Thus we have shown that ν̇B(θ) is
strictly decreasing on any pooling region (where eB(θ) is constant). Moreover νB is continuous,
since νB = ηB by Equation 110 and ηB (a co-state variable) is continuous. Since νB(θ) = 0 implies
ν̇B(θ) = 0 on separating regions, it follows that ν̇B is weakly decreasing everywhere, so νB is
concave.

However, if there are both pooling and separating regions, then νB must be strictly convex
in a neighborhood of any boundary θ̂ between a pooling region and a separating region, because
νB(θ̂ − 2ϵ) = νB(θ̂ − ϵ) = 0 < νB(θ̂ + ϵ) for any ϵ > 0 sufficiently small. Since this contradicts
concavity, there cannot be both pooling and separating regions.

Discarding full separation Now we explain why we conjecture that full separation is (almost)
never optimal: in this case νB(θ) = ν̇B(θ) = 0 for all θ. Since ce(eB(θ), θ) > 0 while νB(θ) = 0
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for full separation, Eq. (136) implies that in this case µB + ξ − ζ = 0. Now Eq. (126) simplifies to:(
be(eB(θ)) + ce(eB(θ), θ)

)
ϕ(θ)

ceθ(eB(θ), θ)
=

1− Φ(θ) + µBΦ(θ)

πA − ζ
(140)

Since the lefthand side is strictly positive by Assumption 1 and Assumption 2 and the righthand
side denominator is strictly positive by Lemma 1, evaluating at θ = θ demonstrates that µB > 0—
i.e., ICDEB must bind. Since µB > 0 and ξ ≥ 0, it follows that ζ ≥ µB > 0, so IRPH also binds. In
addition, the denominator on the righthand side must be positive, so ζ < πA. Since this implies
µB < 1, the righthand side is strictly decreasing in θ. Given µB and ζ , let eRB( · ;µB, ζ) be the
unique solution when this equation applies for all θ.

Consider two cases.

1. First, if ξ = 0 (IRAH does not bind), then evaluating binding ICDEB and binding IRPH at
eRB( · ;µB, ζ) yields two equations in µB and ζ , but we also have µB = ζ . This should lead to
a generic contradiction.

2. Next, if ξ > 0 (IRAH binds), then evaluating binding ICDEB, binding IRAH, and binding
IRPH at eRB( · ;µB, ζ) yields three equations in µB, ξ, and ζ , but we also have µB + ξ = ζ .
This should lead to a generic contradiction.

Moreover, the solution to Eq. (140) may not be a decreasing function, also contradicting full sep-
aration. This is the case with simple linear-quadratic-uniform functional forms, where Eq. (140)
simplifies to

1+ 2θeB(θ)
2eB(θ) =

1− Φ(θ) + µBΦ(θ)

πA − ζ
, (141)

to which the solution eRB( · ;µB, ζ) is strictly increasing:

eRB(θ;µB, ζ) =
1
2(πA − ζ)

−(1+ πA − µB − ζ)θ + 2− µB
, (142)

eRBθ (θ;µB, ζ) =
1
2(πA − ζ)(1+ πA − µB − ζ)

(1+ πA − µB − ζ)θ + 2− µB
> 0, (143)

where the last inequality is implied by 0 < µB ≤ ζ < πA ≤ 1 and 1 ≤ θ ≤ 2.

Full pooling Finally we consider the case of full pooling: in this case eB(θ) = ê for all θ. Since the
“first worst” is fully pooling (it cannot be fully separating, as discussed above), if it satisfies the three
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constraints—ICDEB, IRAH, IRPH—then it is the solution. To solve for the first worst, observe that
when all µB = ξ = ζ = 0, Eq. (136) implies that νB(θ) = 0. So plug µB = ξ = ζ = 0 into Eq. (138),
let eB(θ) = ê for all θ; then integrating yields

∫ θ
θ ν̇

B(θ) dθ = 0, which fully determines ê. If instead
any one of the three constraints binds, then it fully determines ê, so for a given eG generically at
most one of these constraints will bind. A straightforward numerical strategy to solve this case is:

1. First identify the first worst; if it satisfies the three constraints then it is the solution; other-
wise continue.

2. Next identify three candidates for ê, one that binds each constraint;

3. Add a fourth candidate, ê = 0, in case non-negativity binds;

4. Next eliminate any candidate that violates a constraint;

5. Finally evaluate the objective function at the remaining candidates to determine the opti-
mum.
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Appendix A Analysis of the good problem

Appendix A.1 Necessary conditions

The Hamiltonian for this problem is

HG = πA
(
g(eG(θ))− c(eG(θ), θ)

)
ϕ(θ) + ηG(θ)γG(θ)

+ λ(θ)

(
δ

1− δ
πA
(
g(eG(θ))− c(eG(θ), θ)

)
ϕ(θ)− cθ(eG(θ), θ)

)
,

(144)

and the Lagrangean is

LG = HG − νG(θ)γG(θ). (145)
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FromTheorem 6.5.1 from Léonard and van Long 1992):

1. There exists a piecewise-continuous multiplier νG(θ) such that, for all θ,

∂LG∗

∂γG(θ)
= 0 ⇒ HG

γ − νG(θ) = 0 ⇒ ηG(θ) = HG
γ = νG(θ), (146)

νG(θ) ≥ 0, − γG(θ) ≥ 0, and νG(θ)γG(θ) = 0 (147)

2. The co-state variables ηG(θ), andλ(θ) are continuous, and have piecewise-continuous deriva-
tives satisfying the following conditions:

η̇G(θ) = − ∂LG∗

∂eG(θ) = −HG
e

= −πA
(
1+ δ

1− δ
λ(θ)

)(
ge(eG(θ))− ce(eG(θ), θ)

)
ϕ(θ) + λ(θ)ceθ(eG(θ), θ)

(148)

λ̇(θ) = − ∂LG∗

∂KG(θ)
= −HG

K = 0 (149)

3. The state transitions satisfy

ėG(θ) = γG(θ) (150)

K̇G(θ) =
δ

1− δ
πA
(
g(eG(θ))− c(eG(θ), θ)

)
ϕ(θ)− cθ(eG(θ), θ) (151)

4. The Lagrangean LG(eG(θ)∗,KG(θ)∗, ηG(θ), λ(θ), νG(θ), θ) = ψG(θ) is a continuous func-
tion of θ. On each interval of continuity of γG∗

(θ), ψG(θ) is differentiable, and ψG′
(θ) ≡

dLG∗

dθ = ∂LG∗

∂θ .

5. Transversality conditions:

(a)

HG(θ)− µG1
∂KG(θ)

∂θ
− µG2

∂

∂θ
(θ − θL)− µG3

∂

∂θ
(θ − θH)

− µG
∂

∂θ

KG(θ)− c(eG(θ), θ)

− δ

1− δ

(
πAS(eB) + c(eB(θ), θ) + cθ(eB(θ), θ) + uA

)
 = 0

(152)

⇒ HG(θ) + µG cθ(eG(θ), θ)− µG2 = 0 (153)
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(b)

ηG(θ) + µG1
∂KG(θ)

∂e(θ) + µG2
∂

∂e(θ)(θ − θL) + µG3
∂

∂e(θ)(θ − θH)

− µG
∂

∂e(θ)

KG(θ)− c(eG(θ), θ)

− δ

1− δ

(
πAS(eB) + c(eB(θ), θ) + cθ(eB(θ), θ) + uA

)
 = 0

(154)

⇒ ηG(θ)− µG ce(eG(θ), θ) = 0 (155)

(c)

λ(θ) + µG1
∂KG(θ)

∂KG(θ)
+ µG2

∂

∂KG(θ)
(θ − θL) + µG3

∂

∂KG(θ)
(θ − θH)

− µG
∂

∂KG(θ)

KG(θ)− c(eG(θ), θ)

− δ

1− δ

(
πAS(eB) + c(eB(θ), θ) + cθ(eB(θ), θ) + uA

)
 = 0

(156)

⇒ λ(θ) + µG1 = 0 (157)

(d)

HG(θ) + µG1
∂KG(θ)

∂θ
+ µG2

∂

∂θ
(θ − θL) + µG3

∂

∂θ
(θ − θH)

− µG
∂

∂θ

KG(θ)− c(eG(θ), θ)

− δ

1− δ

(
πAS(eB) + c(eB(θ), θ) + cθ(eB(θ), θ) + uA

)
 = 0

(158)

⇒ HG(θ) + µG3 = 0 (159)

(e)

ηG(θ) + µG1
∂KG(θ)

∂e(θ)
+ µG2

∂

∂e(θ)
(θ − θL) + µG3

∂

∂e(θ)
(θ − θH)

− µG
∂

∂e(θ)

KG(θ)− c(eG(θ), θ)

− δ

1− δ

(
πAS(eB) + c(eB(θ), θ) + cθ(eB(θ), θ) + uA

)
 = 0

(160)

⇒ ηG(θ) = 0 (161)
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(f )

λ(θ) + µG1
∂KG(θ)

∂KG(θ)
+ µG2

∂

∂KG(θ)
(θ − θL) + µG3

∂

∂KG(θ)
(θ − θH)

− µG
∂

∂KG(θ)

KG(θ)− c(eG(θ), θ)

− δ

1− δ

(
πAS(eB) + c(eB(θ), θ) + cθ(eB(θ), θ) + uA

)
 = 0

(162)

⇒ λ(θ)− µG = 0 (163)

6. Also the multipliers have the following properties:

(a) For the equality boundary constraints, µG1 , µG2 , µG3 are constants, and

KG(θ) = 0 , θ − θL = 0, and θ − θH = 0 (164)

(b) For the inequality boundary constraint µG is constant, and

µG ≥ 0

KG(θ)− δ

1− δ

(
πAS(eB) + c(eB(θ), θ) + cθ(eB(θ), θ) + uA

)
− c(eG(θ), θ) ≥ 0

µG
(
KG(θ)− δ

1− δ

(
πAS(eB) + c(eB(θ), θ) + cθ(eB(θ), θ) + uA

)
− c(eG(θ), θ)

)
= 0

(165)

Appendix A.2 Observations

1.

λ̇(θ) = 0∀θ from Eq. (149) and λ(θ) = µG from Eq. (163) (166)

2.

ηG(θ) = νG(θ)∀θ from Eq. (146) ⇒ ˙ηG(θ) = v̇G(θ)∀θ (167)

3. Substitute for ηG(θ), and λ(θ) in the remaining conditions as follows:
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(a) From Eq. (147):

νG(θ) ≥ 0 , − γG(θ) ≥ 0, and νG(θ)γG(θ) = 0 (168)

(b) From Eq. (148):

− ˙νG(θ) = πA

(
1+ µG

δ

1− δ

)(
ge(eG(θ))− ce(eG(θ), θ)

)
ϕ(θ)− µceθ(eG(θ), θ) ⇒

⇒ πA

(
1+ µG

δ

1− δ

)(
ge(eG(θ))− ce(eG(θ), θ)

)
ϕ(θ) = µceθ(eG(θ), θ)− v̇G(θ) ⇒

(
ge(eG(θ))− ce(eG(θ), θ)

)
ϕ(θ) =

µG

πA
(
1+ µG δ

1−δ

) (ceθ(eG(θ), θ)− 1
µG

v̇G(θ)
)

(169)

(c) From Eq. (150):

ėG(θ) = γG(θ) (170)

(d) From Eq. (151):

K̇G(θ) =
δ

1− δ
πA
[
g(eG(θ))− c(eG(θ), θ)

]
ϕ(θ)− cθ(eG(θ), θ) (171)

(e) From Eq. (153):

HG(θ) + µGcθ(eG(θ), θ)− µG2 = 0 ⇒

⇒
[
g(eG(θ))− c(eG(θ), θ)

]
ϕ(θ)πA + νG(θ)γG(θ)+

+ µG
[

δ

1− δ
πA
[
g(eG(θ))− c(eG(θ), θ)

]
ϕ(θ)− cθ(eG(θ), θ)

]
+

+ µGcθ(eG(θ), θ)− µG2 = 0 ⇒

⇒ πA
[
g(eG(θ))− c(eG(θ), θ)

]
ϕ(θ)

(
1+ µG

δ

1− δ

)
+ νG(θ)γG(θ)− µG2 = 0

(172)

(f ) From Eq. (157):

µG + µG1 = 0 (173)
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(g) From Eq. (155):

νG(θ)− µGce(eG(θ), θ) = 0 ⇒ νG(θ) = µGce(eG(θ), θ) (174)

(h) From Eq. (159):

HG(θ) + µG3 = 0 ⇒

⇒
[
g(eG(θ))− c(eG(θ), θ)

]
ϕ(θ)πA + µG

[
δ

1− δ
πA
[
g(eG(θ))− c(eG(θ), θ)

]
ϕ(θ)− cθ(eG(θ), θ)

]
+ νG(θ)γ(θ) + µG3 = 0 ⇒

⇒
[
g(eG(θ))− c(eG(θ), θ)

]
ϕ(θ)πA

(
1+ µG

δ

1− δ

)
+ νG(θ)γ(θ)− µGcθ(eG(θ), θ) + µG3 = 0

(175)

(i) From Eq. (161)

νG(θ) = 0 (176)

(j) The properties of the multipliers remain the same.

Appendix A.3 Consolidated necessary conditions

Observe that µG1 , µG2 , and µG3 each appears in only one equation, so the rest of the system can be
solved without them. These multipliers, corresponding to the boundary constraints of KG(θ), θ,
and θ, respectively, are uninteresting, so we do not solve for them. Hence, the set of equations we
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will use to solve for the good effort schedule will be the following:

νG(θ) ≥ 0, (177)
ėG(θ) ≤ 0, (178)
νG(θ)ėG(θ) = 0, (179)(
ge(eG(θ))− ce(eG(θ), θ)

)
ϕ(θ) =

µGceθ(eG(θ), θ)− ν̇G(θ)

πA
(
1+ µG δ

1−δ

) (180)

µG ≥ 0, (181)

KG(θ)− δ

1− δ

(
πAS(eB) + c(eB(θ), θ) + cθ(eB(θ), θ) + uA

)
− c(eG(θ), θ) ≥ 0, (182)

µG
(
KG(θ)− δ

1− δ

(
πAS(eB) + c(eB(θ), θ) + cθ(eB(θ), θ) + uA

)
− c(eG(θ), θ)

)
= 0, (183)

νG(θ) = µGce(eG(θ), θ), (184)
νG(θ) = 0. (185)

Conclusions

1. µG = 0: then the ICDEG is slack at the solution, and thus it suffices to maximize zHA(eG, eB)
subject to themonotonicity constraint,−γG(θ) ≥ 0. Because first-best effort eFB is decreas-
ing, it both maximizes zHA and satisfies monotonicity. Thus, eG = eFB.

2. µG > 0: then the ICDEG binds at the solution.

(a) Define eRG(θ) as the unique solution to

(
ge(e(θ))− ce(e(θ), θ)

)
ϕ(θ) =

µG

πA
(
1+ µG δ

1−δ

)ceθ(e(θ), θ). (186)

Under our assumptions, eRG(θ) is decreasing in θ, and eRG(θ) < eFB(θ)∀θ.

(b) On any interval value where the solution eG(θ) is strictly decreasing in θ, eG(θ) =

eRG(θ). (NOTE: proof same as Levin’s)

(c) If for some θ̂, ˙eG(θ̂) < 0, then eG(θ) is decreasing on [θ̂, θ]. (NOTE: proof same as
Levin’s)

(d) If ICDEG is binding, µG > 0, and from assumptions we also have that ce > 0. Since
at the optimum, νG(θ) = µGce(eG(θ), θ), it follows that νG(θ) > 0. Hence, from
complementary slackness (νG(θ)γG(θ) = 0), we have that γG(θ) = ˙eG(θ) = 0. So,
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there must be pooling of the most efficient types. Combined with points (b), (c); two
possibilities arise:

i. Partial pooling: eG(θ) will be constant below some θ̂ ∈ (θ, θ), and decreasing
above it; i.e.

eG(θ) =

eRG(θ), ∀θ ≥ θ̂

êG, ∀θ ≤ θ̂
(187)

By continuity we have that êG = eRG(θ̂). To find the “cut-off” type θ̂, observe that
νG(θ) = µGce(eG(θ), θ), and νG(θ̂) = 0. If we integrate Eq. (169) from θ to θ̂, and
substitute the boundary conditions, we have:

∫ θ̂

θ

[
ge(eG(θ))− ce(eG(θ), θ)

]
ϕ(θ)dθ = µG

πA
(
1+ µG δ

1−δ

) ∫ θ̂

θ

[
ceθ(eG(θ), θ)−

1
µG

v̇G(θ)
]
dθ =

=
µG

πA
(
1+ µG δ

1−δ

) [ce(eG(θ̂), θ̂)− 1
µG

νG(θ̂)− ce(eG(θ), θ) +
1
µG

νG(θ)

]
=

=
µG

πA
(
1+ µG δ

1−δ

)ce(eG(θ̂), θ̂).
(188)

From the assumptions in the primitives, there is atmost one θ̂ ∈ (θ, θ) that satisfies
this condition.

ii. Full pooling: eG(θ) = ê for all θ. Simply solve for ê from the binding ICDEG
constraint.
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