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Abstract

In multilateral enforcement, a player who cheats on one partner is punished by many partners.
But renegotiation might subvert the threat of multilateral punishment. We consider renegoti-
ation proofness in multilateral enforcement games with public monitoring, and also introduce
the notion of “bilateral renegotiation proofness” for games with private monitoring. With pub-
lic monitoring, renegotiation proofness does not impede multilateral enforcement at all; even
with private monitoring, bilateral renegotiation imposes no cost when a principal interacts with
many agents who can communicate with each other. For community enforcement games with
private monitoring, players’ ability to renegotiate bilaterally has some cost, but this cost is rela-
tively small in large communities.

*Ali: Pennsylvania State University. Miller: University of Michigan. Yang: Stanford GSB. This research is financially
supported by NSF grant SES–1127643.
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1 Introduction

A firm hires two workers but cannot commit to paying their wages. A typical enforcement scheme
involves both workers quitting if the firm reneges on a wage payment to either worker. Because
being punished by both workers is worse than being punished by only the mistreated worker, such
multilateral enforcement is potentially more powerful than bilateral enforcement. But is the threat
credible? When the firm is supposed to be punished by both workers, it has a motive to secretly
renegotiate with each worker to recover some production. Of course, if the firm anticipates that it
can renegotiate its punishments, it may not be so deterred by multilateral enforcement. Thus, the
question that motivates our study is:

If parties may renegotiate, how effective is multilateral enforcement?

That multilateral enforcement might be weakened by renegotiation is a concern expressed by
previous work. Greif, Milgrom, and Weingast (1994) discuss how bilateral renegotiation may im-
pede a merchant guild from credibly punishing a ruler that does not protect their property rights.
Karlan, Möbius, Rosenblat, and Szeidl (2009) study how the measure of “trust” on a network should
anticipate coalitions of players may deviate from punishing a defector; Ambrus, Möbius, and Szeidl
(2014) use this approach to understand risk-sharing networks. Jackson, Rodriguez-Barraquer, and
Tan (2012) highlight how particular network structures may fail to sustain favor exchanges in a way
that is renegotiation-proof.

We revisit this issue and emerge with a contrasting message: renegotiation proofness need not
conflict with multilateral enforcement. In two commonly studied settings, we show that the degree
of cooperation supported by the best equilibrium can also be supported by one that is renegotiation-
proof. Renegotiation costs emerge only when players hold private information about their past ac-
tions, but even then the cost of renegotiation is proportionally small and vanishes in large groups.

Apart from offering a contrastingmessage for renegotiation-proofmultilateral enforcement, our
formalism emphasizes the importance of “penance”, which is familiar from the study of renegotiation
in two player games (e.g., van Damme 1989). A credible social norm forces defectors to perform
favors in penance for others while receiving nothing in return.

1.1 Our Approach

We study renegotiation proofness in two familiar multilateral enforcement games, in each of which
the players’ levels of effort are variable. One game, corresponding to that described above, is the
“agents-and-principal game” in which a single firm interacts with multiple workers who can com-
municate about the firm’s past history (e.g., Levin 2002; Greif, Milgrom, and Weingast 1994). The
other game that we study is the “community enforcement game,” wherein a community ismade up of
bilateral partnerships, eachmodeled as a repeated two-sided Prisoner’s Dilemma (e.g., Kandori 1992;
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Jackson, Rodriguez-Barraquer, and Tan 2012). For both games, we consider perfect public monitor-
ing, as well as perfect private monitoring—i.e., in which each player monitors her own partnerships
perfectly, but observes nothing that happens in other partnerships.

Our results emerge most crisply in the agents-and-principal game (for both public and private
monitoring) and with perfect public monitoring in the community enforcement game. In these
settings, the highest level of cooperation that can be achieved by any equilibrium can be achieved
by a renegotiation-proof equilibrium. Our result is partially constructive: we fully characterize a
weakly renegotiation-proof equilibrium that can support the best equilibrium outcome, and use it
to partially characterize an equilibrium that itself does not invite renegotiation to another weakly
renegotiation-proof equilibrium at any history.

For the community enforcement game with perfect private monitoring, we have to enhance
standard renegotiation concepts to accommodate private information. Although renegotiation is
a well-studied problem, there is no established notion of how partners may secretly renegotiate in
private monitoring environments. Even the act of initiating renegotiation could reveal information,
and would have to be treated as an action undertaken in equilibrium. A formal treatment would
require a general solution to the problem of bargaining with incomplete information, which has not
been undertaken for even two players in a dynamic private monitoring environment.

Instead, our approach imposes the restriction that players can renegotiate using only information
that is commonly known to them. When monitoring is public, our notion coincides with standard
renegotiation proofness. However, under private monitoring our notion is best described as bilat-
eral renegotiation proofness, because it rules out equilibria in which any pair of partners meeting
within the game can bilaterally renegotiate, in secret, to gain a strict improvement for both of them.
All such renegotiations take place only on the basis of what is commonly known between them, and
when it is commonly known than such improvements are possible.

Using this solution concept, we compare the payoffs that emerge from an optimal equilibrium
without renegotiation proofness—namely contagion (Kandori 1992; Ellison 1994)—with the pay-
offs that emerge from a variant of contagion that is bilateral renegotiation-proof. In the community
enforcement game with private monitoring, bilateral renegotiation does reduce the level of cooper-
ation that can be sustained. Nonetheless, the fraction of surplus that is lost from having to assure
renegotiation proofness converges to zero in large communities.

1.2 Relationship to Prior Work

We build on research in both the renegotiation proofness and the multilateral enforcement liter-
atures. Our motivation comes from contagion equilibria—introduced by Kandori (1992), Ellison
(1994), and Harrington (1995)—in which a player shirks on all other players as soon as she observes
a defection. While such a social norm provides incentives to exert effort, its punishments are pe-
culiar in two distinct respects. First, cooperation between “innocent” players dissolves once they
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become aware that a guilty party has shirked somewhere in the population, whereas it is more nat-
ural for innocent players to continue to cooperate among themselves while ostracizing a defector.1

But a second issue, perhaps equally troubling, is that even between an innocent and a guilty player,
it may not be credible that they should suspend cooperation and destroy surplus. The partners are
jointly tempted to resume cooperation in a self-enforcing way—to “let bygones be bygones”.

Prior work has examined renegotiation in multilateral enforcement, limiting attention to per-
fect public monitoring environments.2 The broad theme in this prior work is that renegotiation
considerations limit the degree of cooperation. Greif, Milgrom, and Weingast (1994) in their study
of medieval merchant guilds, allow individual merchants to trade at a bilateral level even with a city
being embargoed by their guild. Since their notion of bilateral trade does not allow for asymmetric
punishments, such embargo-breaking limits the power of multilateral enforcement. Most closely
related, Jackson, Rodriguez-Barraquer, and Tan (2012) investigate the impact of renegotiation on
favor-trading networks with fixed favor sizes. They argue that the combination of renegotiation
proofness and “robustness to social contagion” selects particular network structures (“social quilts”)
that support favor exchanges.

Our paper offers a contrasting message to these prior results: we show that if every partnership
can renegotiate and adjust its level of cooperation, then high cooperation can be sustained in a way
that is both renegotiation-proof and robust to social contagion.3 An important difference is that
we use asymmetric behavior off the equilibrium path in a public monitoring environment to ensure
that deviators are punished in a way that is renegotiation-proof.

One direction in which our work departs from this vein is that we also consider settings in which
each partnership privately observes its history of play. These settings take us outside the realm of
prior work on renegotiation proofness more generally, which restricted attention public (if some-
times imperfect) monitoring.4 The main differences among the various notions of renegotiation
proofness in the literature regard which alternative equilibria are considered valid renegotiation tar-
gets. Our notion of bilateral renegotiation proofness builds on this tradition. When a pair of players
renegotiates bilaterally, any bilateral continuation equilibrium satisfying certain conditions is a valid

1This issue motivates the focus on ostracism and communication incentives in Ali and Miller (2016).
2The issue of renegotiation is also discussed in Appendix C of Greif (2006), which explains why renegotiation isn’t

a problem when workers can be replaced via thick labor markets, or when merchant guilds could punish merchants for
renegotiating with a ruler. Kletzer and Wright (2000) analyze renegotiation proofness between a sovereign borrower and
lender, and construct a renegotiation-proof equilibrium that is invulnerable to side deals between the borrower and other
potential lenders. A separate line of work examines deviations by coalitions of players smaller than the grand coalition.
Ray and Vohra (2001) highlight how the presence of inefficient equilibria may prevent coalitions of players from credibly
punishing free-riders in a public good environmentwith binding contracts. Analogously, Genicot and Ray (2003) describe
risk-sharing arrangements that are immune to deviations by sub-groups that can sustain risk-sharing arrangements on
their own. Karlan, Möbius, Rosenblat, and Szeidl (2009) and Ambrus, Möbius, and Szeidl (2014) study borrowing and
risk-sharing practices when individuals may default and coalitions of players may deviate in their obligations.

3For simplicity, we limit attention to symmetric graphs, but extending the result to asymmetric graphs would not
pose a challenge.

4See, for example, Rubinstein (1980), Bernheim and Ray (1989), Farrell and Maskin (1989), van Damme (1989),
Asheim (1991), Ray (1994), Goldlücke and Kranz (2013), Miller and Watson (2013), and Safronov and Strulovici (2014).
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renegotiation target if it is common knowledge between them that it would deliver a strict Pareto
improvement. The certain conditions that must be satisfied are essentially the same as those that
must be satisfied in a “stationary Pareto perfect” equilibrium (Asheim 1991) of a two-player game.

The perfect private monitoring structure of our environment restricts the scope for all renegoti-
ations to be bilateral. Several works have featured bilateral renegotiation in related contexts. Ghosh
and Ray (1996) study a model with myopic and non-myopic types and introduce “bilateral rational-
ity” as a restriction on play once each player in a partnership recognizes that the other isn’t myopic.
Bilateral rationality requires that the pair then renegotiates to the best equilibrium of a model in
which it is common knowledge that both players are non-myopic. Choy (2015) also assumes bilat-
eral rationality in studying how segregation can be maintained through community enforcement.
Less closely related, Serrano and Zapater (1998) impose bilateral renegotiation proofness on a finite-
horizon environment in which partnerships impose externalities on each other.

2 The Community Enforcement Game

2.1 Environment

Consider a society of players N = {1, . . . ,n} in which each pair of players i and j is engaged in a
partnership ij that meets at random times generated by a Poisson process of rate λ > 0. Meetings are
i.i.d. across relationships and time. Whenever partnership ij meets, they first have the opportunity
to renegotiate, and then they play a stage game in which they simultaneously choose effort levels
ϕi, ϕj in [0,∞). Each pair has access to randomization devices whose realizations are observed only
by that pair; the players can also access randomization devices that are public to all. Players discount
their payoffs over time using a common discount rate r > 0.

Our variable-stakes formulation followsGhosh and Ray (1996): player i’s stage game payoff func-
tion when partnership ij meets is b(ϕj)− c(ϕi), where b(ϕj) is the benefit from her partner j’s effort
and c(ϕi) is the cost she incurs from her own. The benefit function b and the cost function c are
smooth functions satisfying b(0) = c(0) = 0. The social value of effort is π(ϕ) ≡ b(ϕ) − c(ϕ). We
make two assumptions below. Assumption 1 implies that higher effort is always socially beneficial,
and that holding average effort fixed, it’s always better (from a utilitarian standpoint) for partners to
exert a symmetric level of effort. Assumption 2 guarantees that equilibrium effort is bounded, and
that a partnership is willing to exert higher effort only if there are stronger incentives to do so.

Assumption 1. π is weakly concave and there exists ψ > 0 such that π′(ϕ) > ψ for every ϕ.

Assumption 2. c is strictly increasing and strictly convex, with c′(0) = 0 and limϕ→∞ c′(ϕ) = ∞.
The “relative cost” c(ϕ)/π(ϕ) is strictly increasing.

We consider two monitoring environments. If there is perfect public monitoring, then every
interaction is immediately observed by all players. If instead there is perfect privatemonitoring, then
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players observe only the interactionswithin their own partnerships; they observe neitherwhen other
partnerships are recognized nor what happens when they are recognized. In both cases, monitoring
is “perfect” in the sense that whatever players observe they observe without error; we occasionally
refer to these as public and private monitoring below.

2.2 Histories and strategies

An interaction between players i and j at time t comprises the time t at which their partnership
meets, their names, and their effort choices. We focus first on the case of private monitoring, where
any interaction of a partnership ij is perfectly observed by partners i and j, but is unobserved by any
other player, deferring the simpler case of public monitoring to the end of this subsection. Player i’s
private history, denoted hti , is the set of all interactions inwhich she has participated at any time τ < t.
We consider only histories that are regular—those histories in which no two links have ever been
recognized simultaneously. (The set of histories that are not regular is reached with zero probability,
regardless of the players’ strategies.) A strategy for player i determines the mixed action she should
choose when meeting a partner, given her private history. Specifically, if σij(hti) ∈ ∆[0,∞) is the
mixed action she chooses when meeting partner j at private history hti , then σi = (σij)j≠i is her
strategy and σ = (σi)i∈N is the strategy profile.

LetUij(σ∣hti) be the expected continuation payoff that player i obtains within partnership ij from
strategy profile σ, starting from meeting partner j at private history hti . We denominate Uij in flow
terms; i.e., given the discount rate r, Uij(σ∣hti) is the constant payoff arriving at Poisson rate λ such
that at history hti player i is indifferent between this constant flow and strategy profile σ.

The ij-partnership history, denoted htij, is the set of all interactions within partnership ij up to
time t. Since players observe only what happens in their own partnerships, when players i and j
meet with private histories hti and htj , their partnership history is simply htij = hti ∩ htj . We say that
a strategy σi for player i is bilateral in partnership ij if σij(hti) = σij(h̃ti) for all hti and h̃ti that share
the same partnership history htij, and for all t; i.e., player i’s behavior in partnership ij is measurable
with respect to the ij-partnership history. A strategy profile σ is bilateral in partnership ij if σi
and σj are bilateral in partnership ij; σ is bilateral if it is bilateral in every partnership. Even in
a strategy profile σ that is not bilateral in partnership ij, we say that the continuation strategy of
player i is bilateral in partnership ij after partnership history ĥt̂ij if σij(hti) = σij(h̃ti) for all hti and h̃ti
that share the same partnership history htij ⊃ ĥt̂ij, and for all t ≥ t̂; i.e., if player i’s behavior on link ij is
measurable with respect to the ij-partnership history for all ij-partnership histories that succeed ĥt̂ij.
If partners i and j are playing bilateral continuation strategies after partnership history ĥt̂ij, we write
Uij(σ∣htij) ≡ Uij(σ∣hti) for any htij ⊂ hti that succeeds ĥt̂ij.

The ij-joint payoff set of a strategy profile σ at partnership history htij is the collection of all ex-
pected payoff vectors arising from activity in partnership ij given σ at all pairs of private histories
that contain htij: {(Uij(σ∣h̃t̃i),Uji(σ∣h̃t̃j)) ∶ h̃t̃i ∩ h̃t̃j ⊃ htij} . It contains all continuation payoff vectors
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the partners could expect within their partnership at pairs of private histories that succeed partner-
ship history htij.

If there is publicmonitoring, then all players observe all activities. The public history, denoted ht,
is simply the union of all private histories: hti = ⋃i∈N hti . With publicmonitoring, a strategy for player i
determines the mixed action she should choose when meeting a partner, given the public history;
i.e., σij(ht) ∈ ∆[0,∞) is the mixed action she chooses when meeting partner j at public history ht.
For public monitoring, the public payoff set of a strategy profile σ at public history ht is the expected
payoff vector for all players at all public histories that succeed ht: {(∑j≠i Uij(σ∣h̃t̃))i∈N ∶ h̃

t̃ ⊃ ht} .

2.3 Equilibrium concept

We study “plain” perfect Bayesian equilibrium (PBE; Watson 2016), a notion of equilibrium in which
each player maintains and updates a belief that is a probability distribution over strategies of other
players. This notion imposes sequential rationality at all information sets, Bayesian updating on the
equilibrium path, and some constraints on updating off the equilibrium path; Appendix B details it
fully. A plain PBE always satisfies subgame perfection, and is equivalent to subgame perfect equi-
librium in games of perfect monitoring. We restrict attention to PBEs in which all effort choices are
uniformly bounded across histories,5 and effort choices on the equilibrium path are stationary. We
refer to these as equilibria.6

2.4 Renegotiation proofness

A troubling property of many interesting equilibria is that once behavior is off the equilibrium path,
the players may commonly understand that the play prescribed by the equilibrium is Pareto dom-
inated by other self-enforcing arrangements, which motivates them to renegotiate their play. This
prospect motivates the study of renegotiation-proofness more broadly, and we describe below how
we extend prior notions to our settings, beginning with the case of perfect public monitoring.

Following Farrell and Maskin (1989) and Bernheim and Ray (1989), we define “weak renegotia-
tion proofness,” which allows an alternative strategy profile to be a valid renegotiation target if it is
available at some public history in their current strategy profile.

Definition 1. An equilibrium σ is weak renegotiation-proof (WRP) if for each t ≥ 0 and each public
history ht, there does not exist any set of alternative public histories {h̃t̃} and a randomization p ∈
∆{h̃t̃}, such that Ep∑j≠i Uij(σ∣h̃t̃) > ∑j≠i Uij(σ∣ht) for all i ∈ N and all public histories ht.

5The restriction eliminates unreasonable equilibria in which effort grows with further cooperation, eventually ex-
ploding to infinity.

6While the restriction to equilibria that are stationary on the path of play is with loss of generality, we know of no
approaches to construct optimal history-dependent equilibria for a fixed discount factor in a continuous-action environ-
ment. For analogous reasons, Bernheim and Madsen (2016) also restrict attention to equilibria that are stationary on the
path of play in a continuous-action collusion environment.
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Players should also have the option to renegotiate to a “better” WRP equilibrium, if one exists.
We focus on a demanding notion of what it means for one equilibrium to be “better” than another.
A set W ⊂Rn Pareto dominates another set W ′ ≠W if

1. For every a ∈W, there does not exist any b ∈W ′/W for which bi > ai for all i ∈ N;
2. For every b ∈W ′/W, there exists a ∈W such that ai > bi for all i ∈ N.

Definition 2. An equilibrium σ is renegotiation proof (RP) if for each t ≥ 0 and each public history
ht, there does not exist any alternative WRP equilibrium σ′ such that the public payoff set of σ at
public history ht is Pareto dominated by the public payoff set of σ′.

Pareto dominance of the payoff set at a history ht means the alternative WRP equilibrium must
be not merely better for all players at that history, but also not worse for them at any possible future
history. In this sense, renegotiation is “forward-looking”: players cannot credibly renegotiate in
a way that makes them worse off at some future history because they anticipate that they would
renegotiate at that future history.7

2.5 Bilateral renegotiation proofness

Players can renegotiate only on the basis of information that is common knowledge. When only
members of a partnership (perfectly) observe interactions within that partnership—i.e., perfect pri-
vate monitoring—-this restriction implies that all renegotiations must be bilateral.

Definition 3. An equilibrium σ is weak bilateral renegotiation-proof (WBRP) if for each partner-
ship ij, each t ≥ 0, and each partnership history htij, there does not exist any set of alternative part-
nership histories {h̃t̃ij} and a randomization p ∈ ∆{h̃t̃ij}, such that σ is bilateral in partnership ij
after each h̃t̃ij, and EpUij(σ∣h̃t̃ij) > Uij(σ∣hti) and EpUji(σ∣h̃t̃ij) > Uji(σ∣htj) for all hti and htj satisfying
hti ∩ htj = htij.

For purposes of WBRP, for partners at some partnership history, a continuation strategy profile
is a valid renegotiation target if it is bilateral, it is available at some partnership history (or random-
ization over partnership histories) in their current strategy profile, and it would make them both
strictly better off no matter what are their private histories. A simpler, but looser phrasing is that
the partners should renegotiate if they have common knowledge that they can both be better off
switching to some history at which they play bilaterally.

Similarly, partners can renegotiate if they have common knowledge that there exists an alterna-
tive WBRP equilibrium that Pareto dominates their joint payoff set at some history.

7Because the forward-looking requirement constrains the valid renegotiation targets, this notion is weaker than
“strong renegotiation proofness” (Farrell and Maskin 1989) or “consistency” (Bernheim and Ray 1989). Within the rene-
gotiation proofness literature, it is closest to “stationary Pareto perfection” (Asheim 1991).
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Definition 4. An equilibrium σ is bilateral renegotiation proof (BRP) if for each partnership ij, each
t ≥ 0, and each partnership history htij, there does not exist any alternative WBRP equilibrium σ′

such that σ′ is bilateral in partnership ij and the ij-joint payoff set of σ at partnership history htij is
Pareto dominated by the ij-joint payoff set of σ′.

3 Renegotiation in the Community Enforcement Game

3.1 Outline

This section describes our results in the community enforcement game. We first consider the case of
two players and characterize a RP equilibrium that attains the maximum level of cooperation avail-
able in any equilibrium (Proposition 1). This equilibrium uses asymmetric punishments to impose
minimax payoffs on whichever player deviates.

Next we turn to a larger community of n > 2 players. For the case of public monitoring, we show
that maximal cooperation is supported by requiring a defector to pay “penance” by working while
his next partner shirks, after which he is readmitted to equilibrium-path cooperation.

With private monitoring, such penance is not feasible, since only a deviator’s partner knows he
has deviated. Without renegotiation proofness, cooperation is maximized by contagion strategies
(Kandori 1992; Ellison 1994). We augment contagion strategies with asymmetric bilateral punish-
ments to characterize a contagion-like BRP equilibrium.

3.2 Two-Player Games: A Building Block

Suppose n = 2, so monitoring is public, and no player has private information. Every equilibrium
is necessarily bilateral, so the RP and BRP equilibria coincide. We identify a RP equilibrium with
several useful properties that we leverage in our later results on many-player games.

Let ϕB be the largest solution to a player’s incentive constraint when effort is constant and sym-
metric on the equilibrium path, but zero off the equilibrium path:

c(ϕ) ≤ λr π(ϕ). (1)

By Assumption 2, a solution exists and satisfies ϕB < ∞; it is the highest level of symmetric effort
that can be supported by any equilibrium. Our result below shows that this is the utilitarian optimal
equilibrium effort, and can be supported in a RP equilibrium. Renegotiation proofness, therefore,
comes at no cost with two players.

Proposition 1. The sum of flow payoffs in any equilibrium σ, U1(σ)+U2(σ), is bounded by 2π(ϕB).
There exists a RP equilibrium in which each player chooses effort ϕB at every equilibrium path history.
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i shirks on ij j shirks on ij

Bilateral
Cooperation:

work at φB

Punishment:
work at φB

Reward:
shirk

Figure 1. Bilateral WRP equilibrium σ∗, automaton for player i. The initial phase is outlined in bold, and transitions
driven by equilibrium behavior are shown with bold arrows. Not all transitions are shown.

The proof follows three steps (broken into four lemmas below). First, we show that 2π(ϕB) is
an upper-bound for the sum of flow payoffs in any equilibrium. Then we establish the existence
of a WRP equilibrium in which both players choose effort ϕB at every equilibrium path history.
This equilibrium is depicted in Fig. 1. This equilibrium involves a player being punished maximally
in a single period by being forced to exert effort ϕB while her opponent shirks, and following that
punishment phase the players return to bilateral cooperation. (This WRP equilibrium is a straight-
forward generalization of van Damme (1989) for fixed-stakes prisoners’ dilemmas.) In principle,
this equilibrium could be Pareto dominated by an equilibrium that “smooths” out the punishments
in this punishment phase, so we cannot guarantee that this equilibrium is renegotiation-proof. Our
final (non-constructive) step establishes that if this equilibrium is not renegotiation-proof, then a
renegotiation-proof equilibrium exists that supports the same equilibrium path behavior. Because
Proposition 1 is the building block of subsequent results, we include its formal proof below.

Proof of Proposition 1: We remind the reader that we restrict attention to equilibria that are
stationary on the path of play. Lemma 1 bounds the payoffs attained by an equilibrium in this class.

Lemma 1. For every equilibrium, the sum of equilibrium path payoffs is bounded by 2π(ϕB).

Proof. Let µ be the distribution of equilibrium path efforts: i.e., on the equilibrium path (ϕ1, ϕ2) are
derived from distribution µ for every history on the equilibrium path. Let Γµ

i be the support of ϕi in
the marginal distribution on ϕi induced by µ. Observe that a necessary condition for an equilibrium
is that for every ϕ′1 in Γµ

1 and ϕ′2 in Γµ
2 ,

c(ϕ′1) ≤
λ

r (Eµ[b(ϕ2) − c(ϕ1)]) , (Player 1’s IC)

c(ϕ′2) ≤
λ

r (Eµ[b(ϕ1) − c(ϕ2)]) . (Player 2’s IC)

In each case, the left-hand side (LHS) includes the one period gain from deviating by choosing ϕ = 0
rather than ϕ′i and obtaining the minimax payoff of 0 thereafter. The right-hand side (RHS) for each
has the loss from foregoing equilibrium path payoffs. Adding these two together yields that for every
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ϕ′1 in Γµ
1 and ϕ′2 in Γµ

2 , an aggregate constraint must be satisfied:

c(ϕ′1) + c(ϕ′2) ≤
λ

r (Eµ[π(ϕ1) + π(ϕ2)]) , (Aggregate IC)

where we substitute π(ϕ) = b(ϕ) − c(ϕ). By Assumptions 1 and 2, the supports Γµ
1 and Γµ

2 must
have a finite upper bound. Let ϕ̄µi be the highest ϕi in Γµ

i .
A utilitarian optimal equilibrium maximizes Eµ[π(ϕ1) + π(ϕ2)] subject to all incentive con-

straints, on and off the path of play, for each player. Imposing only Player 1’s IC and Player 2’s IC is a
relaxed problem. Because these constraints together imply Aggregate IC, the following is a further
relaxed problem:

max
µ

Eµ[π(ϕ1) + π(ϕ2)] subject to Aggregate IC.

A solution to the above problem involves Γµ
i = {ϕ̄

µ
i } (i.e., a degenerate distribution), because any

non-degenerate distribution that satisfies Aggregate IC can be improved by putting all of its mass
on its highest realization. Therefore, the relaxed problem can be re-written as

max
ϕ1,ϕ2

π(ϕ1) + π(ϕ2) subject to c(ϕ1) + c(ϕ2) ≤
λ

r (π(ϕ1) + π(ϕ2)) .

We argue, using a proof by contradiction, that this relaxed problem has a symmetric solution. Sup-
pose that (ϕ′1, ϕ′2) satisfies the above constraint and ϕ′1 ≠ ϕ′2. Consider the vector (ϕ̄, ϕ̄) where
ϕ̄ = ϕ1+ϕ2

2 . Because c is strictly convex and π is weakly concave, Jensen’s Inequality implies that

2c(ϕ̄) < c(ϕ′1) + c(ϕ′2) ≤
λ

r
(π(ϕ′1) + π(ϕ′2)) ≤

2λ
r π(ϕ̄).

Therefore, shifting to a symmetric solution generates slack in the constraint and (weakly) improves
the objective. Accordingly, the optimal solution is symmetric, and binds the constraint. Notice that
the symmetric solution to the binding constraint is ϕB, which establishes our claim. □

Lemma 2. There exists a WBRP equilibrium that supports ϕB on the equilibrium path.

Proof. Consider a strategy profile σ∗ in which player i’s strategy follows the three-phase automaton:

1. Bilateral Cooperation: Choose stakes ϕB.
2. Punishment: Choose stakes ϕB.
3. Reward: Choose stakes 0.

In any phase, if neither player deviates from expected play or both players deviate simultaneously,
transition to the Bilateral Cooperation phase. In any phase, if player i deviates, transition to the
Punishment phase, while if player −i deviates then transition to the Reward phase. This automaton
is illustrated in Fig. 1 on p. 9.
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Weverify thatσ∗ is an equilibriumby using the one-shot deviation principle. Let us first describe
expected (flow) payoffs in each phase. In the cooperation phase, the constant flow payoff is π(ϕB).
In the punishment phase, because c(ϕB) = λ

r π(ϕ
B), the average flow payoff is 0. In the reward

phase, the average flow payoff is

z∗ = r
λ
[ λ

r + λ
(b(ϕB) + λr π(ϕ

B))] = π(ϕB) + r
r + λb(ϕB).

By construction, no player has an incentive to deviate in the Bilateral Cooperation phase: be-
cause each player obtains her minimax payoff following a deviation, Player 1’s IC and Player 2’s IC
characterize the relevant incentive constraints and are satisfied. In the punishment phase, the player
has an incentive to choose ϕB and obtain a payoff of 0 because no choice of stakes offers her a strictly
positive payoff. In the reward phase, the player is supposed to choose stakes of 0, which maximizes
both her stage game payoff and her continuation payoff.8

Finally, we verify that the equilibrium satisfies WBRP. Let W∗ be the convex hull of (z∗,0),
(0, z∗), and (π(ϕB), π(ϕB)). Since z∗ > π(ϕB) > 0, the equilibrium chooses points in W∗ that are
on the Pareto frontier of W∗. □

Lemma 3. Consider any sequence of 1,2-joint payoff sets {Wk}∞k=1 of WBRP equilibria, starting with
W1 being the Pareto frontier of W∗, such that for each k, Wk+1 Pareto dominates Wk. There exists
a limit set W = limk→∞Wk that is the 1,2-joint payoff set of a WBRP equilibrium such that both
players choose ϕB along the equilibrium path, and such that partner i earns a continuation payoff of
zero after deviating unilaterally.

Because this proof is involved and technical, we relegate it to the Appendix.

Lemma 4. There exists a BRP equilibrium that supports ϕB on the equilibrium path.

Proof. Suppose not; then there must exist an infinite sequence of distinct WBRP equilibria, starting
with σ∗, such that the joint payoff set of each Pareto dominates its predecessors, but such that there
does not exist any WBRP equilibrium whose joint payoff set Pareto dominates every member of the
sequence. By Lemma 3, however, the limit W of this sequence itself is the 1,2-joint payoff set of a
WBRP equilibrium that Pareto dominates every member of the sequence, a contradiction. □

3.3 Many-Player Games with Perfect Public Monitoring

Next we address a multiplayer setting with public monitoring. A natural equilibrium is one in which
all players exert ϕ so long as all players have done so in the past, and otherwise all players exert zero

8Since monitoring is perfect, the constructed subgame perfect equilibrium necessarily corresponds to a plain PBE
where each player’s beliefs about her opponent’s play is correct in every subgame.
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effort. Such an equilibrium features the following incentive constraint on the equilibrium path:

(n − 1)λr π(ϕ) ≥ c(ϕ). (ICPerfect
ij )

The left-hand side captures the future gains from cooperating with n − 1 neighbors while the right-
hand side captures the one-time gain from shirking. Maximizing ϕ subject to ICPerfect

ij yields an
equilibrium that is (utilitarian) optimal; we denote this level of effort by ϕPMn .

This equilibrium invites renegotiation: why should all partnerships cease cooperation as soon as
a single player has shirked? Even further, why should players cease cooperation even with the first
defector when all arrangements are open to renegotiation? We establish that other punishments—
which are renegotiation-proof—can also support this level of effort.

Proposition 2. With perfect public monitoring, the highest equilibrium path effort profile can be
supported by an RP equilibrium.

The proof, in Appendix A.2, adapts the equilibrium of Section 3.2. A player who deviates is,
upon meeting her next partner, required to pay “penance” by exerting effort ϕPMn while her partner
shirks. Thereafter all players return to equilibrium-path behavior.

Comparison with prior results: Insofar as the prior literature has articulated how renegotiation
considerations can impede multilateral enforcement with public monitoring, we describe here how
we reach a different conclusion. The immediate comparison is to Jackson, Rodriguez-Barraquer,
and Tan (2012) who also study renegotiation in the context of community enforcement with perfect
monitoring, and argue that certain networks feature renegotiation-proof favor exchanges but others
do not. To the contrary, we show in Appendix A.2 that our result applies to any regular graph, and
it is straightforward to extend this logic to any graph.

Two conceptual differences are responsible for generating our contrasting results. First, we study
different variants of renegotiation proofness. They propose a variant in which some punishments
are not open to renegotiation: if player i shirks on player j, the relationship ij is mechanically severed,
so i and j are forced to punish each other. All other relationships, however, are open to renegoti-
ation. By contrast, our notion of renegotiation proofness allows a defector to renegotiate with her
victims and third-parties, adhering to conventional approaches to renegotiation. Second, they study
a fixed-stakes environment, where the level of cooperation cannot respond to past history. By con-
trast, our model allows partners to adjust their level of cooperation to suit the situation, enabling
them to discourage renegotiation through asymmetric play.9 Our analysis illustrates that giving
players more flexibility—to renegotiate all punishments and to adjust their cooperation—enables
multilateral enforcement to sidestep issues of renegotiation.10

9Lippert and Spagnolo (2011) construct related, but more complex, multilateral repentance equilibria for networks
of fixed-stakes, asymmetric relationships.

10Jackson, Rodriguez-Barraquer, and Tan (2012) also impose a concept of “robustness to social contagion” whereby
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3.4 Many-Player Games with Perfect Private Monitoring

Private monitoring impedes all the neighbors of a deviator from coordinating their punishment,
which was necessary for Proposition 2. Contagion sidesteps the issue of coordination by destroying
all cooperation in the community as quickly as possible. Of course, such destruction is not (bilateral)
renegotiation-proof. In this sectionwe adapt contagion strategies to employ the two-player RP equi-
librium from Section 3.2 within each partnership once both partners are off the equilibrium path.
Each player cooperates at constant effort along the equilibrium path, but becomes contagious and
starts shirking as soon as he observes a deviation. But unlike contagion, a contagious player shirks
on each partner just once. Upon the first time either partner shirks in a relationship, it becomes
common knowledge between them that they are off the equilibrium path. Then the partners play
the two-player RP equilibrium from Proposition 1 within their relationship, without affecting what
happens in other relationships. Such an equilibrium is immune to bilateral renegotiation, although
it does not attain the same level of cooperation as ordinary contagion.

To maximize cooperation under bilateral renegotiation proofness, we tailor the off-path behav-
ior in each partnership depending on who shirked first. Off the equilibrium path, if player i shirked
first on player j, then in their subsequent play, i is punished while j is rewarded. However, if both
partners simultaneously first shirked on each other, then they cooperate symmetrically.

To state our result, we develop notation for the “rate” at which contagion spreads: namely, once
player i shirks on player j at time 0, what is the discounted probability that player k is still in the
cooperation phase when players i and k next meet? Any payoff that player i may gain from shirking
on player k at that time has to be normalized by the discount rate, and so our interest is in

Xn ≡ ∫
∞

0
e−rtλ xn(t)dt,

where xn(t) is the probability that player k ∉ {i, j} is not contagious at time t, after player i shirks on
player j at time 0.11

Consider what would happen in a conventional contagion equilibrium that is symmetric on the
path of play. Suppose that on the equilibriumpath each player always chooses effortϕ, but any player
who has observed any deviation shirks on all her neighbors. Without the possibility of renegotiation,
the equilibrium path incentive constraint for player i when meeting player j would be

(n − 1)λ
r π(ϕ) ≥ c(ϕ) + (n − 2)Xnb(ϕ). (ICNoRNP)

The left-hand side is the total continuation payoff from following equilibrium. The first term on the

punishments are contained to the local neighborhood of the link in which a defection took place. The equilibrium that
we describe in he proof of Proposition 2 is robust to social contagion.

11Ali and Miller (2013) define Xn as the “viscosity factor” and offer a closed-form formula for the special case of a
complete graph. Since we do not use that formula in our derivations in the main text, we do not reproduce it here.
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right-hand side is the instantaneous gain from shirking on player j (because choosing an effort of 0
saves cost c(ϕ)), and the second term accounts for the possibility that player i may meet his n − 2
other partners while they still think they are on the equilibrium path. Let ϕCn be the effort level that
binds this constraint; Ali and Miller (2013) show that if ϕCn is the equilibrium path effort then all
off-path incentive constraints are satisfied, and this ordinary contagion equilibrium is optimal.

However, ordinary contagion is susceptible to bilateral renegotiation because players perpetu-
ally shirk on each other off the equilibrium path. Each pair of players can privately renegotiate, and
sustain—between themselves—cooperation at level of ϕB for a flow payoff of π(ϕB). In an equilib-
rium that is immune to such bilateral renegotiations, punishments cannot be so severe. Instead, we
construct a WBRP contagion equilibrium as follows. Players always choose effort ϕ on the equilib-
riumpath. When a player observes his first deviation, he becomes contagious and begins shirking on
all his partners. But in each partnership, once both partners know they are off the equilibrium path,
they renegotiate to the RP equilibrium from Section 3.2, such that if one of them shirked first then
that partner is punished, but if both simultaneously shirked first then they cooperate symmetrically.
The equilibrium path incentive constraint is:

(n − 1)λr π(ϕ) ≥ c(ϕ) + (n − 2)∫
∞

0
e−rtλ(xn(t)b(ϕ) + (e−λt − xn(t))

λ

r π(ϕ
B))dt

= c(ϕ) + (n − 2) (b(ϕ)Xn + (
λ

r + λ − Xn)
λ

r π(ϕ
B)) .

(ICRNP
ij )

The left-hand side is the same as before. The right-hand side comprises the instantaneous gain
from shirking on player j, and the future prospects. Being off the equilibrium path leads to the
following consequences when player i next meets player k at time t: if player k thinks she is still on
the equilibrium path (which occurs with probability xn(t)), then she chooses ϕwhile player i shirks,
which leads player i to earn a payoff of b(ϕ) at time t and then zero thereafter; otherwise, if player k
knows she is off the equilibrium path (which occurs with probability e−λt − xn(t)) then she shirks
simultaneously with player i, and from that point on both cooperate at effort ϕB.12 We find that the
best symmetric BRP equilibrium binds this incentive constraint.

Proposition 3. With private monitoring and n > 2, there exists a BRP equilibrium in which players
always exert effort ϕRn that binds Eq. (ICRNP

ij ). This BRP equilibrium outperforms bilateral enforce-
ment, but underperforms the best ordinary contagion equilibrium—i.e., ϕB < ϕRn < ϕCn . No other
symmetric BRP equilibrium attains higher total payoffs on the equilibrium path.

The proof is in Appendix A.3. As in the case of Proposition 1, although the WBRP contagion
equilibrium we construct may not satisfy BRP, it implies the existence of an BRP equilibrium that

12This expression bears further explanation. Suppose, as we have, that player i deviates from the equilibrium path
by shirking on link ij at time 0. Let event Pt be that at time t, players i and k have not met since since time 0, and let
event Qt be that at time t, player k has seen any partner other than player i shirk. Then we claim that e−λt − xn(t) is the
probability of event Pt ∩Qt: The viscosity factor can be rewritten as Xn = ∫

∞
0 e−rtλe−λtx̃n(t)dt, where e−λt = Pr(Pt) and

x̃n(t) = 1 − Pr(Qt∣Pt), and therefore Pr(Pt ∩Qt) = e−λt(1 − x̃n(t)) = e−λt − xn(t).
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attains the samepayoffs on the equilibriumpath. While for expositional simplicitywe have described
behavior as operating on a complete network, our conclusions extend to any symmetric network.

Cost of Renegotiation: The proportional cost of renegotiation is the fraction by which the players’
payoffs decrease when moving from an ordinary contagion equilibrium (without renegotiation) to
the BRP equilibrium described in Proposition 3. We prove that the proportional cost of renegotia-
tion is small in large communities.

Proposition 4. Suppose there exists ϵ > 0 such that 1
ϵ > b′′(ϕ) > ϵ for all ϕ ≥ 0. Then

lim
n→∞

ϕRn
ϕCn
= 1 , (2)

where ϕCn is the level of cooperation in the best contagion equilibrium (without renegotiation).

The proof, in Appendix A.4, uses the condition on b′′ and the fact that the viscosity factor
Xn vanishes as n diverges to infinity to bound the differences between the incentive constraints
Eqs. (ICNoRNP) and (ICRNP

ij ). The cost of renegotiation arises entirely from the off-path events in
which both partners first shirk on each other at the same time, in which case they both receive
strictly positive continuation rewards. This means if one of the partners happens to be the origi-
nal deviator, in this relationship he is not being punished as harshly as he would be under ordinary
contagion.

Contagion spreads more quickly in larger communities, increasing the chance that after a devi-
ation each player k ∉ {i, j} will be contagious when player i first meets k. Since this is the case in
which they both shirk on each other at the same time, it is this case in which the punishment in a
contagion-like BRP equilibrium is less powerful than under contagion. However, as the community
grows, the number of partners increases faster than the reduction in punishment power per partner.
In the limit, the reduction becomes proportionally negligible.13

The conclusion of Proposition 4 also holds for any class of symmetric networks in which the
viscosity factor vanishes in the limit as n → ∞. This condition is easily satisfied; indeed it can only
be violated if average path lengths in the network grow very quickly as the number of players grows,
which is contrary to the nature of large social networks that are typically observed (see, e.g., Jackson
2008; Goyal 2007).

4 Renegotiation inMultilateral Relational Contracts

Here, we study a single principal interactingwithmultiple agents, as inGreif,Milgrom, andWeingast
(1994), Levin (2002), Rayo (2007), and Andrews and Barron (2016). Multilateral enforcement, in

13Indeed, the conclusion of Proposition 4 would still hold even if players simply renegotiated directly to the bilateral
cooperation phase, though such an equilibrium would not be optimal among BRP equilibria on any given network.
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this context, is used to punish the Principal in all of her relationships if she deviates on a single
agent. The concern for renegotiation is that she may bilaterally renegotiate with each agent after
such a defection so that the multilateral punishment is no longer credible. Below we describe a
model and set-up in which punishments can be used to enforce the optimal arrangement without
inviting renegotiation.

The principal (“she”) interacts with n agents (each a generic “he”), indexed by 1, . . . ,n. Each
agent meets the principal at Poisson rate λ to play the following stage game: agent i chooses an
effort level ϕi ≥ 0 and the principal simultaneously choose a wage payment wi ≥ 0. Their stage game
payoffs are wi − c(ϕi) for the agent and b(ϕi)−wi for the principal. An agent’s effort is beneficial to
the principal but costly to him; wage payments are pure (linear) transfers from the principal to the
agent. We maintain Assumptions 1 and 2.

The agents have no payoff-relevant interactions with each other, but can communicate about
the principal’s behavior. This word-of-mouth communication across buyers may be used to disci-
pline the principal, as is common in the literature on multilateral enforcement (Klein 1992; Dixit
2003; Lippert and Spagnolo 2011; Ali and Miller 2016). To facilitate comparison with Section 2, we
maintain the same speed of information diffusion: all communication is bilateral and each pair of
agents meets at Poisson rate λ. We assume that all communication between agents is cheap talk
(and as we highlight, there are no communication incentive problems here).

We now describe the structure of equilibria. Because each agent has payoff interactions with
only one party, namely the principal, no agent can be motivated to exert effort beyond “bilateral
enforcement.” So if agent i is expected to exert ϕi on the equilibrium path and is paid wi every time
that she does so, the following incentive constraint must be satisfied:

wi − c(ϕi) +
λ

r (wi − c(ϕi)) ≥ wi. (Agent’s IC)

The left-hand side above captures the worker’s payoff from working today and in the future whereas
the right-hand side captures the one-time gain from shirking. Agent i’s incentive to exert effort ϕi
for wage wi is uninfluenced by the presence of other agents.

The principal, by contrast, is motivated by multilateral enforcement. In an optimal equilibrium,
absent renegotiation concerns, each agent stops working for the principal once he learns that she has
reneged on any payment to any agent; correspondingly, the principal never pays an agent who has
ever shirked. Since news of the principal’s deviation spreads at the same rate as in the community
enforcement game with n + 1 players, such an equilibrium generates the incentive constraint

b(ϕi) −wi +
λ

r
n
∑
j=1
(b(ϕj) −wj) ≥ b(ϕi) +∑

j≠i
b(ϕj)Xn+1 (Principal’s IC)

However, both Agent’s IC and Principal’s IC ignore renegotiation: once an agent or a principal
has deviated, there is the temptation to bilaterally renegotiate. We prove in this setting that—unlike
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the community enforcement game with private monitoring studied in Section 3.4—imposing bilat-
eral renegotiation proofness does not result in any loss of equilibrium welfare.

Proposition 5. The highest equilibrium path effort profile can be supported by a BRP equilibrium.

The building block for this result is a RP equilibrium for two players, much like the one de-
scribed in Section 3.2; the details are given in Lemma 10 in the Appendix A.5. In this equilibrium,
asymmetric play off the equilibrium path (either working for free, or paying wages for no effort) is
used to achieve minimax payoffs within a single principal-agent partnership. The second step is to
incorporate this equilibrium as the off-path behavior in a multilateral enforcement scheme. In this
scheme, if an agent shirks first on the principal, then she works for free at high stakes before she
and the principal return to the equilibrium path level of cooperation. By contrast, if the principal
deviates, then the agents communicate among themselves about the principal’s deviation, to impose
multilateral punishment on the principal. Once the principal has reneged on an agent, she and that
agent switch to the bilateral enforcement equilibrium within their relationship, starting in the phase
that punishes the principal with a continuation payoff of 0. These punishments are just as severe as
if renegotiation were not possible.

5 Conclusion

Renegotiation is central to multilateral enforcement. Multilateral enforcement presumes coordina-
tion on an equilibrium in which a deviator is punished by multiple players. But players who find
themselves at a “bad history” in which surplus is being destroyed may be able to renegotiate to a
better outcome. Anticipating such renegotiation may temper or negate the threat of community
enforcement, a concern that prior work has exposited.

Our main conclusion is that in multilateral enforcement against a single principal, or in commu-
nity enforcementwith publicmonitoring, renegotiation does not impinge on the level of cooperation
that can be supported in equilibria. It is only when monitoring is private that renegotiation imposes
some cost on community enforcement, but this cost proportionally vanishes in large societies.
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A Main Appendix

A.1 Proof of Lemma 3 on p. 11
Consider a sequence as specified above. First we establish some facts for each Wk.

1. Each Wk contains the point π(ϕB, ϕB).
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Proof: By Step 1, the sum of equilibrium payoffs is less than 2π(ϕB) and therefore, Wk cannot contain
a point that Pareto dominates (ϕB, ϕB). Therefore, (ϕB, ϕB) ∈Wk for each k.

2. The endpoints of each Wk are (zk,0) and (0, ẑk), for some zk, ẑk ∈ [z∗,2π(ϕB)].
Proof: π(ϕB) is obtained by both partners cooperating at ϕB, which requires that any deviator receive
a continuation payoff of no more than zero, which is her stage game minimax. Wk therefore contains
some point (zk,0). If zk < z∗ then (zk,0) would be strictly Pareto dominated by a convex combination
of π(ϕB, ϕB) and (z∗,0), contrary to the supposition that Wk Pareto dominates W1. Finally, by Step 1,
we must have zk, ẑk ≤ 2π(ϕB).

Next we show that the pointwise limit W = limk→∞Wk exists and is the joint payoff set of a WBRP
equilibrium. Using public randomization, without loss of generality we take each joint payoff set Wk to be
the weak-Pareto frontier of the convex hull of the closure of its actual joint payoff set. It then follows from
Theorem 4.1 of Warburton (1983) that Wk is connected and closed.

1. The pointwise limitW = limk→∞Wk exists, and is connected and internally weak-Pareto incomparable.
Proof: Since each Wk ⊂ R2

+ is internally weak-Pareto incomparable, we identify each Wk by a func-
tion Fk(x) = max({y ∶ (x, y) ∈ Wk} ∪ {0}) on the on the domain [0,2π(ϕB)]. Each Fk is evi-
dently decreasing and integrable, and is concave on the subdomain [0, zk]. Since the sequence is
increasing in the Pareto dominance ordering, Fk(x) is increasing in k for all x. By our earlier steps,
Fk(0) ∈ [z∗,2π(ϕB)], Fk(2π(ϕB)) = 0, and ∫

2π(ϕB)
0 Fk dx ≤ 2π(ϕB). Now the Monotone Convergence

Theorem (e.g., Aliprantis and Border 1999, Theorem 11.17) implies that there exists a decreasing and
integrable function F that is the pointwise limit of {Fk}, with ∫

2π(ϕB)
0 Fdx = limk→∞ ∫

2π(ϕB)
0 Fk dx.

Since F is the pointwise limit of {Fk}, there exists z = inf{x ∶ F(x) ≤ 0} ∈ [z∗,2π(ϕB)] such that F is
concave on [0, z].
Define W ≡ {(x,F(x)) ∶ x < z} ∪ {(z, y) ∶ y ∈ [0,F(z)]}. We have already shown that each point
(x,F(x)) for which x ≤ z is a limit point of {Wk}, as is the point (z,0). Finally, each point (z, y) such
that y ∈ (0,F(z)] is a limit point of {Wk} since each Wk is connected and concave. Therefore W as
defined is in fact the pointwise limit of {Wk}.

2. There exists a WBRP equilibrium whose joint payoff set is W.
Proof: Fix any v ∈ W, and consider a sequence vk → v such that vk ∈ Wk for each k. Fix a compact,
metrizable state spaceΩ for the public randomization device. Since eachWk is the joint payoff set of an
equilibrium, for each vk ∈ Wk there exists a public distribution ζvk on Ω, efforts {ϕi;vk ∶ Ω→R+}i=1,2,
and a promised utility function wvk ∶ Ω →Wk (simplified to deliver only the promised utility expected
if neither player deviates) such that

vk = Eζvk
( r
r + λπ(ϕ1;vk , ϕ2;vk) +

λ

r + λwvk(ω)) (3)

and, for all ω and i = 1,2,

r
r + λ (b(ϕi;vk) − c(ϕ−i;vk)) +

λ

r + λwi;vk(ω) ≥ max
ϕi∈[0,2ϕB]

r
r + λ (b(ϕi) − c(ϕ−i;vk(ω))) (4)
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Nowalthough {ζvk , ϕvk ,wvk}need not converge, since all effort profiles used in equilibriumare bounded,
they lie in the product of compact spaces with natural metrics defined for each space.14 Since a finite
product of compactmetric spaces is compact andmetrizable, the sequence lies in a sequential compact
space (see Munkres 2000, Theorems 26.7 and 28.2 and p. 219). Therefore there exists a subsequence
{ζvj , ϕvj ,wvj}, where {j} ⊂ {k}, that converges to a limit point (ζv, ϕv,wv) that satisfies Eqs. (3) and (4).
For each v ∈ W, consider the promised utility function that yields (0, z) ∈ W if player 1 deviates,
(z,0) ∈ W if player 2 deviates, and wv(ω) ∈ W otherwise. Then we construct an equilibrium using
an automaton strategy profile with states W, randomization rules {ζv}v∈W, effort rules {ϕv}v∈W, and
transition rules given by the promised utility functions just described. Because W is internally weak-
Pareto incomparable, this equilibrium is WBRP.

A.2 Proof of Proposition 2 on p. 12
Instead of proving results for a complete graph with n players, we establish these results for any “regular
network” in which each player has d partners. Doing so facilitates comparison with the closest antecedent,
Jackson, Rodriguez-Barraquer, and Tan (2012). Of course, a special case of these results is for the complete
graph with n = d + 1 players; in that case, in what follows let ϕPMn = ϕ̃PMd+1.

Lemma 5. For every equilibrium, the sum of payoffs is bounded above by ϕ̃PMd , the solution to

dλr π(ϕ) = c(ϕ). (5)

Proof. We denote the (undirected) network by G, and say that ij ∈ G if player i and j are linked in network G.
Generically, we denote by ϕij the effort exerted by player i with respect to her neighbor player j, and with a
slight abuse of notation, we denote (ϕij)ij∈G as the vector of stakes across all relationships.

We follow the proof approach of Lemma 1, extending it to n players and for regular networks of degree
d. For an equilibrium, let µ be a distribution of equilibrium path stakes and let Γµ

ij be the support of effort
level ϕij for the marginal distribution of ϕij induced by µ. A necessary condition for an equilibrium is that for
every ϕ′i in Γµ

ij ,

c(ϕ′ij) ≤
λ

r ∑k∈N(i)
(Eµ[b(ϕki) − c(ϕik)]) , (Player i’s IC)

where N(i) is the set of neighbors of player i. Let ij ∈ N Adding these ICs across all relationships generates
the inequality

∑
ij∈G
(c(ϕ′ij) + c(ϕ′ji) ≤

λ

r ∑ij∈G
(Eµ[π(ϕij) + π(ϕji)]) . (Aggregate IC with n players)

14{ζvk} is compact and metrizable by Theorem 14.11 of Aliprantis and Border (1999); each {ϕi;vk} lies in the set of
probability measures over [0, 2ϕB]; {wvk} may also be identified by 2-dimensional vectors in [0, 2ϕB]2. Each sequence
therefore lies in a compact metrizable space.
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Instead of solving for the utilitarian optimal equilibrium, let us solve the relaxed problem

max
µ
∑
ij∈G

Eµ[π(ϕij) + π(ϕji)] subject to Aggregate IC with n players.

A solution to the above problem must involve a degenerate distribution (because any non-degenerate dis-
tribution that is in the constraint set can be improved by putting all of its mass on its highest realizations).
Therefore, the relaxed problem can be re-written as

max
(ϕij)ij∈G

∑
ij∈G
[π(ϕij) + π(ϕji)] subject to ∑

ij∈G
(c(ϕij + c(ϕji)) ≤

λ

r ∑ij∈G
(π(ϕij) + π(ϕji)) .

We argue that any solution to the above program must be symmetric: ∃ϕ such that ϕij = ϕ for every ij ∈ G.
Consider a vector (ϕij)ij∈G such that ϕij ≠ ϕkl for some ij and kl in G. Consider a vector of stakes, ϕ̃ where
each coordinate is the arithmetic average of (ϕij)ij∈G : because π is weakly concave and c is strictly convex, it
follows from Jensen’s Inequality that ϕ̃ improves the objective while strictly relaxing constraints. Therefore,
any asymmetric vector of stakes that is in the constraint set can be strictly improved (from the perspective of
the objective) without leaving the constraint set. The maximal symmetric solution corresponds to ϕPMd . □

Lemma 6. There exists a WRP equilibrium that supports ϕ̃PMd on the equilibrium path.

Proof. Consider a strategy profile σ∗ that follows the automaton:

1. Cooperation: Exert effort ϕ̃PMd .
2. Punish i: Player j ≠ i chooses effort ϕ̃PMd when interacting with player k ≠ i and chooses effort 0 when

interacting with player i. Player i chooses ϕ̃PMd when interacting with all players.

In any phase, if more than one player deviates simultaneously, then remain in the current phase; if player i
deviates unilaterally then transition to the Punish i phase. In the Cooperation phase, if no player deviates,
then remain in that phase. In the Punish i phase, if no player deviates, transition to the Cooperation phase.

We verify that σ∗ is an equilibrium by using the one-shot deviation principle. Player i’s expected payoffs,
in flow terms, in each phase are as follows

1. Cooperation Phase: dπ(ϕ̃PMd )
2. Punish i Phase: A multiple of −c(ϕ̃PMd ) + dλ

r π(ϕ̃
PM
d ) = 0.

3. Punish j Phase (where j ≠ i): dπ(ϕ̃PMd ) + r
r+dλb(ϕ̃PMd ).

By construction, no player has an incentive to deviate in the Cooperation Phase. In the Punish i phase, player
i does not gain from deviating because she receives her minimax payoff. In the Punish j phase, player i obtains
lower short-term and long-term payoffs from deviating. □

Lemma 7. There exists an RP equilibrium that supports ϕ̃PMd .

Proof. The argument follows that of Lemma 4, establishing an analogue to Lemma 3, and hence is omitted.
□

A.3 Proof of Proposition 3 on p. 14
We begin by establishing some properties of Xn.
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Lemma 8. Xn < λ
r+λ for all n ≥ 2, and limn→∞ Xn = 0.

Proof. These follow from Lemma 2 of Ali and Miller (2013), which states that

Xn =
1

n − 2
n−1
∑
m′=2

⎛
⎝

1
m′

m′

∏
m=2

λm(n −m)
r + λm(n −m)

⎞
⎠
. (6)

□

To prove Proposition 3, we construct a WBRP contagion equilibrium σ∗∗ with the desired properties,
and show that it implies the existence of a BRP equilibrium with similar properties. Formally, each player i’s
strategy σ∗∗i is defined by a collection of “partial automata,” one for each of his partnerships. A partial au-
tomaton for player i in partnership ij determines player i’s behavior when meeting partner j; because player i’s
various partnerships are strategically interdependent, transitions between phases in partnership ij may be
driven by interactions that occur in other partnerships. Let each player i’s behavior and beliefs in partnership
ij be governed by the following five-phase partial automaton, illustrated in Fig. 2.

1. Global Cooperation: Exert effort ϕRn . Believe that Player j is in the global cooperation phase.
2. Contagion: Exert effort 0. Believe that Player j is in the global cooperation phase with some probability,

and in the contagion phase with complementary probability.
3. Bilateral cooperation: Exert effort ϕB. Believe that Player j is in the bilateral cooperation phase.
4. Punishment: Exert effort ϕB. Believe that Player j is in the reward phase.
5. Reward: Exert effort 0. Believe that Player j is in the punishment phase.

The bilateral cooperation, punishment, and reward phases in σ∗∗ are identical to the corresponding phases
described in the proof of Proposition 1. Transitions from the other two phases are a bit more complicated:

• In the global cooperation phase, if both partners exert effort ϕRn , remain in the global cooperation
phase. If neither partner exerts effort ϕRn , transition to the bilateral cooperation phase. If player i exerts
effort ϕRn but partner j does not, transition to the reward phase; if partner j exerts effort ϕRn but player j
does not, transition to the punishment phase. If any player k ∈ N/{i, j} exerts effort other than ϕRn in
partnership ik, transition to the contagion phase in partnership ij.

• In the contagion phase, if neither partner exerts effort ϕRn , transition to the bilateral cooperation phase.
If player i exerts effort ϕRn but partner j does not, transition to the reward phase; if partner j exerts
effort ϕRn but player i does not, transition to the punishment phase. If both partners exert effort ϕRn ,
transition to the contagion phase.

The global cooperation phase is the initial phase in every partnership.

Proof of Proposition 3. First we confirm that this strategy profile σ∗∗ constitutes an equilibrium. By Propo-
sition 1 incentive constraints are satisfied in the bilateral cooperation, punishment, and reward phases. So it
suffices to check only the incentive constraints in the global cooperation and contagion phases.

We show that the equilibrium-path incentive constraint Eq. (ICRNP
ij ), is slack at ϕ = ϕB. Since ϕB is set to

make the bilateral Nash reversion incentive constraint bind, b(ϕB) = r+λ
r π(ϕ

B). So Eq. (ICRNP
ij ) is slack at ϕB
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i or k shirks on ik 
for any k≠j

i shirks on ij

i,j both 
shirk on ij

j shirks on ij

i shirks on ij j shirks on ij

Global
Cooperation:

work at φn
R

Contagion:
shirk

Bilateral
Cooperation:

work at φB

Punishment:
work at φB

Reward:
shirk

i shirks on ij

Figure 2. Bilateral renegotiation proof contagion partial automaton for player i in partnership ij. The initial phase is
outlined in bold, and transitions driven by player i’s equilibrium behavior are shown with bold arrows. Not all transitions
are shown.
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if and only if

( r + λr + (n − 2) ( r + λr Xn + (
λ

r + λ − Xn)
λ

r ))π(ϕ
B) < (1 + (n − 1)λr )π(ϕ

B)

⇐⇒ (n − 2)(Xn +
λ

r + λ
λ

r ) < (n − 2)λr ⇐⇒ Xn <
λ

r + λ ,
(7)

which is established by Lemma 8. Because c is continuous and strictly convex (Assumption 2), there exists
ϕRn > ϕB that binds Eq. (ICRNP

ij ), at which each player is indifferent between working at ϕRn and shirking in the
global cooperation phase.

To establish that σ∗∗ is an equilibrium, it remains to verify the contagion phase incentives. First, player i’s
contagion phase incentive constraint when meeting a player j he believes is contagious is

−c(ϕ) + ∫
∞

0
e−rte−λtλ(b(ϕB) + λr π(ϕ

B))dt ≤ λr π(ϕ
B). (8)

Since ϕRn > ϕB, to show that Eq. (8) is satisfied at ϕ = ϕRn , it suffices to show that Eq. (8) is slack at ϕ = ϕB:

−c(ϕB) + λ

λ + r(b(ϕ
B) + λr π(ϕ

B)) < λr π(ϕ
B). (9)

Recall that c(ϕB) = λ
r π(ϕ

B) by definition of ϕB. Therefore Eq. (8) is slack at ϕ = ϕB if

λ

r > −
r

λ + r
λ

r +
λ

λ + r(1 +
λ

r ), (10)

which is guaranteed.
Next, we address a contagious player i’s incentive constraint when meeting a partner he believes is not

contagious. This follows from an identical argument to that of Lemma 5 of Ali and Miller (2013), which
proves that player i’s contagion-phase incentive to shirk on a non-contagious partner is strictly larger when he
knows contagion has already started than on the equilibrium path. Since he is indifferent on the equilibrium
path (Eq. (ICRNP

ij ) binds), it follows that he strictly prefers to shirk on a non-contagious partner when he is
contagious. Intuitively, when he knowsmore players are already contagious, he has less at stake, and therefore
it would be harder to convince him to work, i.e., it is easier to convince him to shirk.

Now we have shown that contagion phase incentives of σ∗∗ are satisfied for extremal beliefs. Since ex-
pected payoffs are linear in player i’s belief about his current partner, the contagion phase incentive constraints
are satisfied for all intermediate beliefs. Given this fact, there is no need to verify plain consistency in the con-
tagion phase. Plain consistency is guaranteed in the bilateral cooperation, reward, and punishment phases
because behavior on link ij is independent of behavior on all other links. Evidently σ∗∗ is a plain perfect
Bayesian equilibrium.

Finally, we show that if σ∗∗ is not BRP, then there must exist some BRP equilibrium that attains the
same equilibrium path payoffs. Observe that two partners cannot bilaterally renegotiate when one or both
of them is in the contagion phase—they cannot arrive in the contagion phase by any transition that is com-
mon knowledge between them, and they stay in the contagion phase only for one interaction.15 Moreover,

15They could stay in the contagion phase for more than one interaction only if the contagious player deviates (or both
contagious players deviate, as the case may be) by working at ϕR

n . However, such a deviation does not generate common
knowledge of the contagion phase, because it is indistinguishable from the behavior specified for the global cooperation
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according to σ∗∗, they bilaterally renegotiate to the bilateral equilibrium σ∗ described in Proposition 1 as
soon as it becomes common knowledge between them that they are off the equilibrium path. Though σ∗

may not be BRP, Proposition 1 establishes that there exists some BRP equilibrium in bilateral strategies that
supports cooperation at efforts ϕB; to do so, it must employ minimax punishments. In σ∗∗, the first player
to depart from global cooperation behavior along any link is punished with the minimax continuation payoff;
the only possible way to relax Eq. (ICRNP

ij ) would be to punish both partners when they simultaneously depart
from global cooperation behavior. However, the reason that each player departed from global cooperation
behavior is not common knowledge information and therefore cannot be used to assign blame. In order to be
measurable with respect to their common knowledge, their continuation payoff must be symmetric. Due to
WBRP, they therefore cannot receive continuation payoffs less than λ

r π(ϕ
B). That is, no BRP equilibrium can

impose stronger incentives in the global cooperation phase. Since σ∗∗ maximizes equilibrium path payoffs
subject to these constraints, there must exist an BRP equilibrium that attains the same payoffs.

Optimality of this equilibrium among all symmetric WBRP equilibria is established by Lemma 9, below.
□

Lemma 9. No symmetric BRP equilibrium supports cooperation at effort greater than ϕRn .

Proof. Suppose that ϕ is the effort each player always exerts on the equilibrium path of a symmetric BRP
equilibrium. On the equilibrium path, suppose that player i shirks on partner j, and that thereafter player i’s
punishment in partnership ij is to receive an average payoff of P. In our BRP contagion equilibrium σ∗∗, P = 0;
more generally P ≥ 0. Now consider what happens when player i subsequently meets partner k ≠ j for the
first time after his initial deviation. If player k still believes that nobody has deviated or is otherwise supposed
to cooperate, then in partnership ik player i earns at least b(ϕ) + λ

r P, by shirking immediately and earning P
thereafter. If instead player k is off the equilibrium path, then at worst for player i they may both shirk and
then continue with each earning a continuation flow payoff of π(ϕB), which we will prove below.

Accordingly, the incentive constraint to cooperate on the equilibrium path is

b(ϕ) + λr P + (n − 2) (Xn(b(ϕ) +
λ

r P) + ( λ

r + λ − Xn)
λ

r π(ϕ
B)) ≤ (n − 1)λr π(ϕ) + π(ϕ). (11)

Notice if P = 0 (as in σ∗∗) then Eq. (11) reduces to

b(ϕ) + (n − 2) (Xnb(ϕ) + (
λ

r + λ − Xn)
λ

r π(ϕ
B)) ≤ (n − 1)λr π(ϕ) + π(ϕ), (12)

in which case cooperating at ϕRn is supported on the equilibrium path. If instead P > 0, then

b(ϕRn) +
λ

r P + (n − 2) (Xn(b(ϕRn) +
λ

r P) + ( λ

r + λ − Xn)
λ

r π(ϕ
B))

> b(ϕRn) + (n − 2) (Xnb(ϕRn) + (
λ

r + λ − Xn)
λ

r π(ϕ
B)) = (n − 1)λr π(ϕ

R
n) + π(ϕRn).

(13)

Thus the equilibrium effort supported in a symmetric equilibrium in which P > 0 must be less than ϕRn .
We still need to show that if player i and k first meet when both are already off the equilibrium path, then

letting them first shirk on each other and then renegotiate to the bilateral cooperation phase at efforts ϕB is the

phase.
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harshest possible punishment that can be imposed on whichever (if either) of them was the original deviator.
BRP requires that their renegotiated play must be measurable with respect to their partnership history, which
unfortunately does not identify the original deviator. We already showed that no BRP equilibrium payoff is
Pareto dominated by the average payoff vector (πϕB, πϕB) (Proposition 1). Now suppose player i and k ne-
gotiate to a bilateral equilibrium strategy with average payoff vector (Ui,Uk) ≠ (π(ϕB), π(ϕB)). BRP implies
that (Ui,Uk)must also be on the Pareto frontier of bilateral WBRP equilibria, so without loss of generality as-
sume that Uk < π(ϕB) < Ui. Since the equilibrium must be symmetric, on first deviating player i must expect
the same payoff in each of his (n − 2) other relationships. Therefore a necessary condition for his incentive
constraint on the equilibrium path is

b(ϕ) + λr P + (n − 2) (Xn(b(ϕ) +
λ

r P) + ( λ

r + λ − Xn)
λ

r Ui) ≤ (n − 1)λr π(ϕ) + π(ϕ). (14)

Since the LHS of Eq. (14) is greater than LHS of Eq. (11), ϕRn will not satisfy Eq. (14). It follows that cooperating
can be supported on the equilibrium path at efforts no greater than ϕRn . □

A.4 Proof of Proposition 4 on p. 15
We begin with two straightforward claims.

Claim 1. For all n > 0, (n − 1)(Xn − λ
r ) − Xn < 0.

This is a straightforward consequence of Lemma 8.

Claim 2. limn→∞
(n−1)λr +1
1+(n−2)Xn

=∞.

This follows from Lemma 8 sinceXn ≥ 0 for all n. Note limn→∞
(n−1)λr +1
1+(n−2)Xn

=∞ is a necessary and sufficient
condition for limn→∞ ϕ

C
n =∞, by Eq. (ICNoRNP).

Manipulating Eq. (ICNoRNP) when it binds reveals that b(ϕC
n )

π(ϕC
n )
= (n−1)

λ
r +1

1+(n−2)Xn
, so limn→∞

b(ϕC
n )

π(ϕC
n )
= ∞. Notice

b(ϕ)
π(ϕ) is monotone (so its inverse function exists), given Assumption 2. Together with Assumption 1, we have

lim
ϕ→∞

c(ϕ)
π(ϕ)

=∞

since both c(ϕ) and π(ϕ) are positive and strictly increasing for ϕ ∈ (0,∞), c(ϕ) is strictly convex, and π(ϕ)
is weakly concave. Thus b(ϕ)

π(ϕ) =
c(ϕ)
π(ϕ) + 1→∞ as ϕ→∞. Thus the inverse function of b(ϕ)

π(ϕ) , (
b
π
)−1(t)→∞ as

t→∞. It follows that limn→∞ ϕ
C
n =∞.

Letting A = λ
r π(ϕ

B) and B = λ
r+λ

λ
r π(ϕ

B), we find that, by Eqs. (ICNoRNP) and (ICRNP
ij ), ϕRn and ϕCn are the

largest solutions to the following equations, respectively:

b(ϕRn) + (n − 2)Xnb(ϕRn) − ((n − 1)λr + 1)π(ϕRn) = (n − 2)XnA − (n − 2)B, (15)

b(ϕCn ) + (n − 2)Xnb(ϕCn ) − ((n − 1)λr + 1)π(ϕCn ) = 0. (16)

Note that
(n − 2)XnA − (n − 2)B < 0, (17)
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where the last inequality is equivalent to Xn < λ
r+λ , implied by Lemma 2 of Ali and Miller (2013).

Define Fn(ϕ) = b(ϕ) + (n − 2)Xnb(ϕ) − ((n − 1)λr + 1)π(ϕ); i.e., the left-hand side of Eqs. (15) and (16).
Note that Fn inherits convexity from b and −π, and that Fn(ϕRn) = (n − 2)XnA − (n − 2)B < Fn(ϕC) = 0. Now
Fn′(ϕ) = b′(ϕ) + (n − 2)Xnb′(ϕ) − ((n − 1)λr + 1)π′(ϕ) and

Fn′(0) = b′(0) + (n − 2)Xnb′(0) − ((n − 1)λr + 1)π′(0) = (d(Xn −
λ

r ) − Xn)b′(0) < 0, (18)

where the second equality comes fromAssumption 2 and the inequality comes fromClaim 1. By the convexity
of Fn, it is easy to see that for any fixed n > 0, there exists a ϕlarge > 0 such that Fn′(ϕlarge) > 0. Also, since
Fn′′ > 0, there exists one unique critical point ϕmin

n that solves Fn′(ϕ) = 0, i.e.,

b′(ϕmin
n ) + (n − 2)Xnb′(ϕmin

n ) − ((n − 1)λr + 1)π′(ϕmin
n ) = 0. (19)

Then

b′(ϕmin
n ) =

((n − 1)λr + 1)π′(ϕmin
n )

1 + (n − 2)Xn
>
((n − 1)λr + 1)ψ
1 + (n − 2)Xn

, (20)

where ψ > 0 is the lower bound on π′ from Assumption 1. Note that Fn′(ϕ) < 0 for all ϕ < ϕmin
n , and Fn′(ϕ) > 0

for all ϕ > ϕmin
n .

From Claim 2, the RHS of Eq. (20) goes to infinity as n→∞; by monotonicity of b′(ϕ), limn→∞ ϕ
min
n =∞.

It is easy to check that there exist ϕpos > ϕneg > 0 such that Fn(ϕneg) < 0 < Fn(ϕpos); from continuity, there
exists ϕCn which solves Eq. (16).

From Proposition 3, Eq. (17), and Eq. (ICNoRNP), Fn(ϕmin
n ) < Fn(ϕGRn ) < Fn(ϕRn) < Fn(ϕCn). Since Fn′(ϕ) > 0

for all ϕ > ϕmin
n , by monotonicity it follows that ϕmin

n < ϕRn < ϕCn . Since limn→∞ ϕ
min
n =∞, limn→∞ ϕ

R
n =∞.

Next, we consider linear approximation of Fn near ϕR and ϕC: due to the convexity of Fn,

(n − 2)B − (n − 2)XnA
Fn′(ϕCn )

< ϕCn − ϕRn <
(n − 2)B − (n − 2)XnA

Fn′(ϕRn)
. (21)

From Eq. (17), (n−2)B−(n−2)XnA
Fn′(ϕC

n )
> 0. Dividing ϕRn and adding 1 on all sides of the inequalities, we get:

(n − 2)B − (n − 2)XnA
ϕRnFn′(ϕCn)

+ 1 < ϕ
C
n
ϕRn
< (n − 2)B − (n − 2)XnA

ϕRnFn′(ϕRn)
+ 1. (22)

Taking limits, we get:

1 ≤ lim
n→∞

ϕCn
ϕRn
≤ lim

n→∞
(n − 2)B − (n − 2)XnA

ϕRnFn′(ϕRn)
+ 1. (23)

Since

(n − 2)B − (n − 2)XnA
ϕRnFn′(ϕRn)

+ 1 < (n − 2)B
ϕRnFn′(ϕRn)

+ 1, (24)
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given Eq. (23) it suffices to show that

lim
n→∞

(n − 2)B
ϕRnFn′(ϕRn)

= lim
n→∞

n−2
n−1B

1
n−1ϕ

R
nFn′(ϕRn)

= 0 ⇐⇒ lim
n→∞

1
nϕ

R
nFn′(ϕRn) =∞. (25)

Recall Fn′(ϕ) ≤ Fn′(ϕRn) for all ϕ ≤ ϕRn . Hence

Fn(ϕRn) − Fn(ϕmin
n ) = ∫

ϕR
n

ϕmin
n

Fn′(ϕ)dϕ ≤ ∫
ϕR
n

ϕmin
n

Fn′(ϕRn)dϕ = Fn′(ϕRn)(ϕRn − ϕmin
n ), (26)

where the first equality is the Fundamental Theorem of Calculus, and the inequality is from the monotonicity
of Fn′. Transposing Fn′(ϕRn)ϕmin

n to the opposite side in Eq. (26), we get

Fn′(ϕRn)ϕRn ≥ Fn′(ϕRn)ϕmin
n + Fn(ϕRn) − Fn(ϕmin

n )

= (1 + (n − 2)Xn)b′(ϕRn)ϕmin
n − ((n − 1)λr + 1)π′(ϕRn)ϕmin

n

+ (n − 2)XnA − (n − 2)B − ((1 + (n − 2)Xn)b(ϕmin
n ) − ((n − 1)λr + 1)π(ϕmin

n ))

= (n − 2)XnA − (n − 2)B + (1 + (n − 2)Xn)(b′(ϕRn)ϕmin
n − b(ϕmin

n ))

+ ((n − 1)λr + 1)(π(ϕmin
n ) − π′(ϕRn)ϕmin

n )

≥ (n − 2)XnA − (n − 2)B + (1 + (n − 2)Xn)(b′(ϕRn)ϕmin
n − b(ϕmin

n )),

(27)

where the first equality is derived by plugging in

Fn′(ϕRn) = (1 + (n − 2)Xn)b′(ϕRn) − ((n − 1)λr + 1)π′(ϕ) (28)

Fn(ϕRn) = (n − 2)XnA − (n − 2)B (29)

Fn(ϕmin
n ) = (1 + (n − 2)Xn)b(ϕmin

n ) − ((n − 1)λr + 1)π(ϕmin
n ); (30)

and the last inequality is from the concavity of π:

π(ϕmin
n ) = ∫

ϕmin
n

0
π′(ϕ)dϕ ≥ ∫

ϕmin
n

0
π′(ϕRn)dϕ = π′(ϕRn)ϕmin

n . (31)

From Eq. (20),

b′(ϕmin
n ) =

((n − 1)λr + 1)π′(ϕmin
n )

1 + (n − 2)Xn
= ∫

ϕmin
n

0
b′′(ϕ)dϕ ≤ ∫

ϕmin
n

0

1
ϵ
dϕ = ϕ

min
n
ϵ

, (32)

where the second equality is the Fundamental Theorem of Calculus and the inequality is from the condition
1
ϵ
> b′′(ϕ) > ϵ. Then Assumption 1 implies that

ϕmin
n ≥

((n − 1)λr + 1)π′(ϕmin
n )ϵ

1 + (n − 2)Xn
≥
((n − 1)λr + 1)ψϵ

1 + (n − 2)Xn
. (33)
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Notice

b′(ϕRn)ϕmin
n − b(ϕmin

n ) = ∫
ϕmin
n

0
b′(ϕRn)dϕ − ∫

ϕmin
n

0
b′(ϕ)dϕ

= ∫
ϕmin
n

0
(b′(ϕRn) − b′(ϕ))dϕ

= ∫
ϕmin
n

0 ∫
ϕR
n

ϕ
b′′(s)ds dϕ

≥ ∫
ϕmin
n

0 ∫
ϕR
n

ϕ
ϵds dϕ

= ∫
ϕmin
n

0
ϵ(ϕRn − ϕ)dϕ

= ϵ(ϕRnϕmin
n − 1

2(ϕ
min
n )2)

= ϵ2ϕ
min
n (2ϕRn − ϕmin

n )

≥ ϵ2 ⋅
((n − 1)λr + 1)ψϵ

1 + (n − 2)Xn
(2ϕRn − ϕmin

n ),

(34)

where the last inequality is derived from plugging Eq. (33). Using Eq. (34) in Eq. (27), we get

Fn′(ϕRn)ϕRn ≥ (n − 2)XnA − (n − 2)B +
ϵ2ψ((n − 1)λr + 1)

2 (2ϕRn − ϕmin
n ).

Thus, since limn→∞ Xn = 0 (see Lemma 8) ,

lim
d→∞

Fn′(ϕRn)ϕRn
n ≥ lim

n→∞
(n − 2)XnA − (n − 2)B

n +
ϵ2ψ((n − 1)λr + 1)

2n (2ϕRn − ϕmin
n )

= −B +
ϵ2ψ λ

r
2 lim

n→∞
(ϕRn + ϕRn − ϕmin

n )

≥ −B +
ϵ2ψ λ

r
2 lim

n→∞
(ϕRn).

(35)

Since limn→∞(ϕRn) =∞, the RHS of Eq. (35) goes to∞, so

lim
d→∞

Fn′(ϕRn)ϕRn
n − 1 =∞. (36)

Now Eq. (25) is proved, and plugging it into Eq. (23) gives

1 ≤ lim
n→∞

ϕCn
ϕRn
≤ 1, (37)

which concludes our proof.

A.5 Proof of Proposition 5 on p. 17
We begin with a preliminary step for the case of a single agent.
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Lemma 10. Suppose that there is a single agent (i.e. n = 1). Then, there exists a BRP equilibrium σ̂ in which,
along the equilibrium path, the agent exerts effort ϕB > 0 that solves

c(ϕ) = ( λ

r + λ)
2
b(ϕ), (38)

and the principal pays a wage

wB = r + λ
λ

c(ϕB). (39)

Off the equilibrium path, if either party deviates then his or her continuation payoff is zero. No equilibrium
sustains higher equilibrium path effort.

Proof. We construct a WBRP equilibrium σ̂ with the above properties in which a player who deviates is
punished for a single period and then cooperation resumes. Specifically, the principal and the agent both play
according to the following automaton:

1. Bilateral Cooperation: Exert effort ϕB or pay wage wB.
2. Bilateral Punishment: Exert effort ϕB or pay wage wB.
3. Reward: Exert effort 0 or pay wage 0.

The bilateral cooperation is the initial phase for both players. In any phase, if one player deviates then that
player transitions to the punishment phase while the other transitions to the reward phase. A player remains
in the reward phase until the other takes the action correspond to the punishment phase. Once that occurs,
players transition to the bilateral cooperation phase.

Observe that once the agent is in the punishment phase, the payoff he accrues starting from the next
interaction with the principal is −c(θB) + λ

r (w
B − c(θB)), which given Eq. (39), is 0. Similarly, once the

principal is in the punishment phase, the payoff she accrues starting from the next interaction with the agent
is also 0, given Eq. (38). Therefore, we may summarize the agent’s and principal’s ICs in the equilibrium phase
as follows:

wB ≤ (1 + λr )(w
B − c(ϕB)); (40)

b(ϕB) ≤ (1 + λr )(b(ϕ
B) −wB). (41)

We note that Eqs. (40) and (41) ensure that Eqs. (40) and (41) hold with equality. Substituting and simplifying
Eq. (40) yields that θB is a solution to

c(ϕ)
π(ϕ)

= λ2

r2 + 2λr ; (42)

Assumptions 1 and 2 guarantee that the above equation has a unique solution, and therefore, guarantee exis-
tence and uniqueness of ϕB and wB.

Since wB > wB − c(ϕB) > 0 and b(ϕB) > b(ϕB) − wB > 0, no two points in the 0, 1-joint payoff set of
this equilibrium are Pareto comparable, so σ̂ is WBRP. Moreover, since σ̂ employs minmax punishments, no
greater effort can be sustained in any equilibrium. Then, by Lemma 3, there exists a BRP equilibrium that
attains the same effort and also employs minimax punishments. □
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We use Lemma 10 to establish the case for n agents and a single Principal.

Proof of Proposition 5. Our proof comprises two steps. The first is deriving the maximal effort profile that
can be supported in an equilibrium using only the equilibrium path incentive constraints. The second is
constructing a BRP equilibrium that implements that effort profile.

Step 1: Maximal effort in an equilibrium. Recall that we restrict attention to equilibria that are stationary on
the path of play. For expositional convenience, we restrict attention here to pure strategy equilibria.16 In any
equilibrium in which on the equilibrium path, agent i exerts effort ϕi > 0 and the principal pays wage wi > 0,
both Agent’s IC (on p. 16) and Principal’s IC (on p. 16) must hold. Therefore, optimizing equilibrium path
efforts corresponds to the following program

max
ϕ1,...,ϕn

n
∑
i=1
ϕi subject to ∀i, (1)wi ≥ (1 +

r
λ
) c(ϕi),

(2)Principal’s IC,

where (1) is a simplified version of Agent’s IC. Because λ
r > Xn, it follows that (1) must bind for each i; other-

wise, ϕi could be increased slightly, which would only relax or keep unchanged other constraints, and increase
the objective function. Setting (1) to bind, substituting into Principal’s IC, and substituting π(ϕ) = b(ϕ)−c(ϕ)
yields

max
ϕ1,...,ϕn

n
∑
i=1
ϕi subject to ∀i,

λ

r π(ϕi) + (
λ

r − Xn+1)∑
j≠i
π(ϕj) ≥ (1 +

r
λ
) c(ϕi) +

n
∑
j=1

c(ϕj) + Xn+1∑
j≠i

c(ϕj), (43)

Adding the d constraints leads to an aggregated constraint

[λr + (n − 1) (λr − Xn+1)]
n
∑
i=1
π(ϕi) ≥ [1 +

r
λ
+ n + (n − 1)Xn+1]

n
∑
i=1

c(ϕi). (44)

Weuse the above constraints to argue that any solution to (43) involves symmetric efforts. Suppose (ϕ∗1 , . . . , ϕ∗n)
is a solution to (43) and there exists i and j such that ϕ∗i ≠ ϕ∗j . Because π is weakly concave (Assumption 1)
and c is strictly convex (Assumption 2), setting each ϕi = 1

n ∑
n
j=1 ϕ

∗
j would not change the objective function,

but would ensure that (44) holds with slack (because of Jensen’s Inequality). But then each constraint in (43)
must also hold with slack. In that case, each ϕi can be increased slightly, which strictly improves the objective
function and contradicts (ϕ∗1 , . . . , ϕ∗n) being optimal.

Because a symmetric solution is optimal, substitute ϕi = ϕ for every i into Eq. (44). Setting it to hold with
equality yields

c(ϕ)
π(ϕ)

=
λ
r + (n − 1) (λr − Xn+1)
1 + r

λ
+ n + (n − 1)Xn+1

.

Assumption 2 ensures that this equation has a unique solution; we call that solution ϕRn . Let wR
n = λ+r

λ
c(ϕRn)

be the wage associated with ϕRn that makes Agent’s IC hold with equality.

Step 2: A BRP Equilibrium that supports ϕRn on the equilibrium path. We construct a strategy profile σ̃ in

16Extending the following argument to mixed strategy equilibria is straightforward.
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which each agent plays according to the following partial automaton:

1. Global Cooperation: Exert effort ϕRn .
2. Global Punishment: Exert effort ϕRn .
3. Bilateral Cooperation: Exert effort ϕB.
4. Bilateral Punishment: Exert effort ϕB.
5. Reward: Exert effort 0.

Transitions from the bilateral cooperation, bilateral punishment, and reward phases are the same as in σ̂ in
Lemma 10. In the global cooperation and punishment phases, if the agent learns from another agent that the
principal has deviated in another partnership, then the agent transitions immediately to the reward phase, and
remains in it until the principal pays wage wB, after which the agent transitions to bilateral cooperation. If the
agent deviates while the principal pays wR

n defined below, then the agent transitions to the global punishment
phase. Otherwise transition to the global cooperation phase.

The principal plays according to a different partial automaton in his relationship with each agent i:

1. Global Cooperation: Pay wage wR
n .

2. Global Reward: Pay wage 0.
3. Contagion: Pay wage 0.
4. Bilateral Cooperation: Pay wage wB.
5. Bilateral Punishment: Pay wage wB.
6. Reward: Pay wage 0.

Transitions from the bilateral cooperation, bilateral punishment, and reward phases are the same as in σ̂.
Transitions from the other states are a bit more complicated:

• Global Cooperation: If the agent deviates while the principal pays wR
n , then transition to the reward

phase. If the principal pays agent i any wage other than wR
n , then transition to the bilateral punishment

phase. If the principal deviates in the partnership with any agent j ≠ i or if any agent j ≠ i deviates, then
transition to the contagion phase. Otherwise remain in the global cooperation phase.

• Contagion phase: If the principal pays any wage other than wR
n , then transition to the punishment

phase. If the principal deviates to pay wage wR
n and the agent exerts effort ϕRd , then remain in the

contagion phase. If the principal deviates to pay wage wR
n and the agent exerts any effort other than ϕRd ,

then transition to the reward phase.

• Global Reward phase: Remain in the global reward phase until agent i exerts effort ϕRd , then transition
to the global cooperation phase.

We now verify incentives. By construction of ϕRn and wR
n , the equilibrium path incentive constraints hold

for the principal and each agent. In the Global Punishment phase, an agent’s expected payoff, beginning with
the next interaction, is 0, and no action offers the agent a strictly positive payoff, so the agent has no incentive
to deviate. Of course, in the Global Reward phase, the principal is acting in ways that maximize both her
myopic and long-term payoff so there is no incentive to deviate. Furthermore, each agent i always weakly
prefers to communicate truthfully. Communicating truthfully with other agents has no effect on her payoff.
A agent who deviates obtains a payoff of 0 Finally, we verify that once the principal has reneged on one agent,
he strictly prefers to renege on other agents. This incentive constraint is identical to the contagion phase
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incentive constraint studied by Kandori (1992), Ellison (1994), and Ali and Miller (2013), and follows from
adapting the proofs of Lemmas 4 and 5 in Ali and Miller (2013).

Since this equilibrium maximizes equilibrium-path effort, by Lemma 3 if σ̃ is not BRP then there must
exist a BRP equilibrium with the claimed properties.

□

B Supplementary Appendix: Definition of Plain PBE
A “plain” perfect Bayesian equilibrium (PBE;Watson 2016) is a strategy profile that is sequentially rational for a
conforming appraisal system that satisfies plain consistency. An appraisal system represents the players’ beliefs
about strategy profiles conditional on their information sets. A conforming appraisal profile is a conditional
probability system over the space of pure strategy profiles, where conditioning with respect to information
sets in the extensive form correctly represents the (behavior) strategy profile. An appraisal system satisfies
plain consistency if each player updates as a Bayesian when he moves from a predecessor information set to a
successor information set, both on and off the path of play. In particular, his updating respects independence
properties that were present in his beliefs at the start of the game and have not been contradicted by evidence.

We define PBE for the community enforcement game, following Watson (2016) but with some inconse-
quential modifications for clarity. Extension to the agents-and-principal game is straightforward. In what
follows, we identify any regular private history hi with its associated information set. In addition let each
player have an additional information set h0i that precedes all others, representing the beliefs that player has
about the strategy profile at the start of the game; let H̄i = Hi ∪ {h0i }. Let H̄ = H̄1 ∪ ⋯ ∪ H̄n be the space of
information sets in the game tree that are associated with regular private histories, let S be the space of pure
strategy profiles, and for an information set h ∈ H̄ let S(h) ⊆ S be the set of pure strategy profiles for which
the support of the path of play has non-empty intersection with h. Define S(h0i ) = S for all i.

Definition 5 (Watson 2016, Definition 3). An appraisal system on S is a family of conditional probability
measures {θ( ⋅ ∣E)}E⊆S on S such that

• For each E ⊆ S, θ(S/E∣E) = 0;

• For any nonempty A ⊆ B ⊆ C ⊆ S, θ(A∣C) = θ(A∣B)θ(B∣C).

An appraisal system generalizes probability distributions to allow players to update their beliefs when
reaching information sets that were not in the support of the original distribution θ( ⋅ ∣S). We are interested
in an appraisal system that properly represents the strategy profile.

Definition 6 (Watson 2016, Definition 8). An appraisal system θ on S conforms to a strategy profile σ if for
each player i, for each information set hi ∈ Hi, and each measurable set of actions Φi ⊂ R+, θ(S(hi,Φi) ∣
S(hi)) = σ(Φi∣hi), where S(hi,Φi) is the set of pure strategy profiles that reach hi and choose effort in Φi.

This definition implies that players have correct beliefs because, for each player, by definition θ( ⋅ ∣S(h0i )) =
θ( ⋅ ∣S). That is, all players start off with common, correct belief in equilibrium strategies.

Definition 7 (Watson 2016, Definition 7). An appraisal system θ on S satisfies plain consistency if for each
player i and for each measurable and non-trivial two-element partition {L,−L} of the set of information sets,
and for each pair of information sets hi ∈ H̄i and h′i ∈ Hi for player i such that h′i is a successor of hi, if there
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exists a product set of strategy profiles Z = ZL ×Z−L ⊂ S(hi) such that ZL ⊂ S(h′i)L , Y ≡ S(h′i)∩Z = ZL ×Y−L ,
and θ( ⋅ ∣S(hi)) exhibits independence between ZL and Z−L with θ(Y∣S(h′i)) > 0, then θ(⋅∣S(h′i)) exhibits
independence between ZL and Y−L , and θ(XL × Y−L∣Y) = θ(XL × Z−L∣Z) for every XL ⊂ ZL.

Note that the conditions on Z mean that player i, conditioning on Z at both hi and h′i , does not learn
anything about behavior within ZL when moving from hi to h′i . Then player i’s belief about any XL ⊂ ZL when
conditioning on Y at h′i must be the same as her belief about XL when conditioning on Z at hi.

Definition 8 (Watson 2016, Definition 9). A plain perfect Bayesian equilibrium is a behavior strategy pro-
file σ such that there exists a conforming appraisal θ that satisfies plain consistency, and for each player i and
each information set hi, σ satisfies sequential rationality with respect to θ:

σi(hi) ∈∆ argmaxϕi∈R+ ∫s∈S(hi,ϕi)
Ui(s∣hi)dθ(s∣S(hi, ϕi)). (45)

The sequential rationality condition, incorporating the one-shot deviation principle,17 simply states that
player i should choose an action at hi that maximizes his expected payoff conditional on hi and that action,
taking the strategy profile and appraisal system as given. Together, sequential rationality and plain consistency
guarantee that a PBE satisfies subgame perfection (Watson 2016, Theorem 2), because for any subgameG ⊂ H
and any h ∈ H, θ( ⋅ ∣h) exhibits independence between S(h)G and S(h)−G. Therefore a player updates correctly
about the strategy profile within G upon entering G. Sequential rationality then implies he must be playing
a best response in G. Since this argument relies on independence of strategies between S(h)G and S(h)−G
rather than on the extensive form, it applies without modification to any portion of the game tree that is
treated by the strategy profile as if it were a subgame—such as the information sets representing meetings
within partnership ij that succeed a partnership history h∣ij forwhichσ(h∣ij) is bilateral on link ij. This property
guarantees that when two partners renegotiate to bilateral play along their link, they must renegotiate to a
continuation strategy profile that would be a subgame perfect equilibrium if their link were isolated.

17The one-shot deviation principle holds in this environment because players are exponential discounters and stage
game payoffs are uniformly bounded in any equilibrium.
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